ON THE EQUIVALENCE OF HERMITIAN INNER PRODUCTS
ON TOPOLOGICAL *-ALGEBRAS

MART ABEL¹* AND MATI ABEL²

Communicated by M. Joita

ABSTRACT. Sufficient conditions for a topological *-algebra under which several Hermitian inner products are mutually equivalent are given.

1. INTRODUCTION

For constructing a Hermitian K-theory for topological *-algebras, one usually supposes that the algebra under consideration is unital and locally m-convex (see [7]). In this paper we obtain similar results as in [7] for the case of both unital and non-unital topological *-algebras without assuming locally m-convexity.

1.1. Preliminary definitions. Throughout this paper \mathbb{K} denotes either the set \mathbb{R} of all real numbers or the set \mathbb{C} of all complex numbers. Let A be a *-algebra over \mathbb{K} and M a left A-module. $\text{Hom}_A(M,A)$ stands for the set of all A-linear maps $f : M \to A$. Under the operations:

\[(f + g)(m) := f(m) + g(m), \quad (af)(m) := f(m)a^*, \quad (\lambda f)(m) := \overline{\lambda}[f(m)] \quad (1.1)\]

for all $f, g \in \text{Hom}_A(M,A)$, $m \in M$ and $\lambda \in \mathbb{K}$, $\text{Hom}_A(M,A)$ becomes a left A-module.

An A-valued Hermitian inner product on M is a map $\alpha : M \times M \to A$ which satisfies the following properties:

Date: Received: 11 December 2009; Accepted: 20 February 2010.

* Corresponding author

This research was partly supported by Estonian Science Foundation Grant 7320 and partly supported by Estonian Targeted Financing Project SF0180039s08.

2000 Mathematics Subject Classification. Primary 15A63; Secondary 15B57, 16Wxx, 46Kxx.

Key words and phrases. Hermitian inner product, inner product, involution, topological *-algebra, sequentially Mackey completeness.
Similarly, (2) and (3) imply
α implies ϕ implies that the map ϕ is Hermitian, i.e., $\alpha(x, y) = \alpha(y, x)^*$ for every $x, y \in M$;
(3) α is Hermitian, i.e., $\alpha(x, y) = \alpha(y, x)^*$ for every $x, y \in M$;
(4) the map $\phi : M \to \text{Hom}_A(M, A)$, $x \mapsto \phi(x)$, defined by $(\phi(x))(y) := \alpha(y, x)$,
is an isomorphism of A-modules.

Notice, that the conditions (1) and (3) together imply
$(1') \alpha(x, \lambda y + \mu z) = \lambda \alpha(x, y) + \mu \alpha(x, z)$ for every $\lambda, \mu \in \mathbb{K}$ and $x, y, z \in M$.

Similarly, (2) and (3) imply
$(2') \alpha(x, ay) = \alpha(x, y)a^*$ for every $a \in A$ and $x, y \in M$.

Hence, α is also \mathbb{K}-sesquilinear and A-homogeneous on both arguments.

Moreover, the condition
$(4a) \alpha(x, x) = \theta_A$ if and only if $x = \theta_M$
implies that the map ϕ defined in (4) is one-to-one. (Indeed, suppose that $\phi(x) = \phi(y)$ for some $x, y \in M$. Then
\[\alpha(x - y, x) = [\phi(x)](x - y) = [\phi(y)](x - y) = \alpha(x - y, y) \]
implies $\alpha(x - y, x - y) = \theta_A$. Hence, $x - y = \theta_M$ by $4a$ and $x = y$.)

A Hermitian inner product α on M is said to be spectrally positive definite (for short positive definite\(^1\)), if $\text{Sp}_A(\alpha(x, x)) \subset [0, \infty)$ for every $x \in M$.

Let B be a non-unital algebra. The set $\{e_1, \ldots, e_m\}$ of elements of a B-module M is said to be a basis of M if for every $m \in M$ there exist unique elements $b_1, \ldots, b_m \in B$ and unique numbers $\lambda_1, \ldots, \lambda_m \in \mathbb{K}$ such that
\[m = \sum_{i=1}^{m} b_i e_i + \sum_{i=1}^{m} \lambda_i e_i. \]

In case A is a unital algebra, the set $\{e_1, \ldots, e_m\}$ of elements of an A-module M is said to be a basis of M if for every $m \in M$ there exist unique elements $a_1, \ldots, a_m \in A$ such that
\[m = \sum_{i=1}^{m} a_i e_i. \]

2. On the existence of a Hermitian inner product

First, we show that under some conditions, which are automatically fulfilled for Hausdorff locally C^*-algebras (see [3, Remark 1.2, p. 184]), every topological \ast-algebra admits a positive definite Hermitian inner product.

Lemma 2.1. Let A be a unital \ast-algebra for which the following conditions are fulfilled:

(a) If $a \in A$, then $aa^* = \theta_A$ if and only if $a = \theta_A$.

\(^1\)Another kind of a positive element in a \ast-algebra is given in [3, p.183]. This notion of positiveness agrees with spectrally positiveness for Hausdorff locally C^*-algebras (viz. complete locally m-convex C^*-algebras) [3, p. 184] (see also [4, Theorem 2.5, p. 205]).
(b) If $n \in \mathbb{N}$ and $a_1, \ldots, a_n \in A$, then $\text{Sp}_A(\sum_{i=1}^{n} a_i a_i^*) \subseteq [0, \infty)$.
(c) The only self-adjoint element $a \in A$ with $\text{Sp}_A(a) = \{0\}$ is the zero element θ_A of A.

Moreover, let M be an A-module with basis $\{e_1, \ldots, e_m\}$. Then the map $\alpha : M \times M \to A$, defined by

$$\alpha(x, y) = \alpha\left(\sum_{i=1}^{m} x_i e_i, \sum_{i=1}^{m} y_i e_i\right) := \sum_{i=1}^{m} x_i y_i^*$$

for every $x, y \in M$, defines an A-valued positive definite Hermitian inner product on M.

Proof. Let $x = \sum_{i=1}^{m} x_i e_i$, $y = \sum_{i=1}^{m} y_i e_i$, $z = \sum_{i=1}^{m} z_i e_i$ be elements of M, $a \in A$ and $\lambda, \mu \in \mathbb{K}$. Then

$$\alpha(\lambda x + \mu y, z) = \alpha\left(\sum_{i=1}^{m} (\lambda x_i + \mu y_i)e_i, \sum_{i=1}^{m} z_i e_i\right) = \sum_{i=1}^{m} (\lambda x_i + \mu y_i)z_i^* =$$

$$= \lambda \sum_{i=1}^{m} x_i z_i^* + \mu \sum_{i=1}^{m} y_i z_i^* = \lambda \alpha(x, z) + \mu \alpha(y, z),$$

$$\alpha(ax, y) = \alpha\left(\sum_{i=1}^{m} (ax_i)e_i, \sum_{i=1}^{m} y_i e_i\right) = \sum_{i=1}^{m} (ax_i)y_i^* = a \sum_{i=1}^{m} x_i y_i^* = a \alpha(x, y),$$

and

$$\alpha(x, y) = \sum_{i=1}^{m} x_i y_i^* = \sum_{i=1}^{m} (y_i x_i^*)^* = \left(\sum_{i=1}^{m} y_i x_i^*\right)^* = \alpha(y, x)^*.$$

Hence, the first 3 conditions of an A-valued Hermitian inner product are fulfilled. This implies that the conditions $(1')$ and $(2')$ are also fulfilled.

Clearly $\alpha(\theta_M, \theta_M) = \theta_A$. Suppose that $\alpha(x, x) = \theta_A$ for some $x \in M$. Then

$$\sum_{i=1}^{m} x_i x_i^* = \theta_A.$$

Hence,

$$\sum_{i=1}^{m-1} x_i x_i^* = -x_m x_m^*$$

and

$$\text{Sp}_A\left(\sum_{i=1}^{m-1} x_i x_i^*\right) = \text{Sp}_A(-x_m x_m^*) = -\text{Sp}_A(x_m x_m^*).$$

By the condition (b), we get that

$$\text{Sp}_A\left(\sum_{i=1}^{m-1} x_i x_i^*\right) \subseteq [0, \infty) \quad \text{and} \quad \text{Sp}_A(x_m x_m^*) \subseteq [0, \infty).$$

Thus,

$$\text{Sp}_A\left(\sum_{i=1}^{m-1} x_i x_i^*\right) = \{0\} = \text{Sp}_A(x_m x_m^*).$$
Condition (c) implies that \(x_m x_m^* = \theta_A \) from which by condition (a) follows that \(x_m = \theta_A \). Similarly, we get that \(x_{m-1} = \theta_A, \ldots, x_1 = \theta_A \). Hence, from \(\alpha(x, x) = \theta_A \) it follows that \(x = \theta_M \). Consequently, \(\phi : M \rightarrow \text{Hom}_A(M, A) \), defined by \([\phi(x)](y) = \alpha(x, y) \) is one-to-one.

Take now any \(\psi \in \text{Hom}_A(M, A) \), define \(x_i := \psi(e_i)^* \) for every \(i \in \{1, \ldots, m\} \) and \(x := \sum_{i=1}^m x_i e_i \). Then \(x \in M \) and

\[
\psi(y) = \sum_{i=1}^m y_i \psi(e_i) = \sum_{i=1}^m y_i (\psi(e_i)^*)^* = \sum_{i=1}^m y_i x_i^* = \alpha(y, x) = [\phi(x)](y)
\]

for every \(y \in M \). Hence, \(\phi \) is also onto.

Notice, that by the properties (1), (2), (3), (1’) and (2’) of \(\alpha \) and the condition (1.1) of the operations on \(\text{Hom}_A(M, A) \), we have

\[
[\phi(ax)](y) = \alpha(y, ax) = \alpha(y, x)a^* = [a\phi(x)](y),
\]

\[
[\phi(x + z)](y) = \alpha(y, x + z) = \alpha(y, x) + \alpha(y, z) = [\phi(x)](y) + [\phi(z)](y),
\]

and

\[
[\phi(\lambda x)](y) = \alpha(y, \lambda x) = \lambda \alpha(y, x) = [\lambda \phi(x)](y)
\]

for every \(a \in A, x, y, z \in M \) and \(\lambda \in K \). Hence, \(\phi(ax) = a\phi(x) \), \(\phi(x + z) = \phi(x) + \phi(z) \) and \(\phi(\lambda x) = \lambda \phi(x) \) for every \(a \in A, \lambda \in K \) and \(x, z \in M \). Therefore, \(\phi \) is an isomorphism of \(A \)-modules. Thus, \(\alpha \) is an \(A \)-valued Hermitian inner product on \(M \). Condition (b) implies that \(\alpha \) is also positive definite. \(\square \)

Corollary 2.2. Let \(B \) be a non-unital \(*\)-algebra for which the following conditions are fulfilled:

(a) If \(b \in B \), then \(bb^* = \theta_B \) if and only if \(b = \theta_B \).

(b) If \(n \in \mathbb{N}, b_1, \ldots, b_n \in B \) and \(\lambda_1, \ldots, \lambda_n \in K \), then

\[
\text{Sp}_{B \times K} \left(\sum_{i=1}^n (b_i, \lambda_i)(b_i, \lambda_i)^* \right) \subset [0, \infty).
\]

(c) The only self-adjoint element \((b, \lambda) \in B \times K \) with \(\text{Sp}_{B \times K}((b, \lambda)) = \{0\} \) is the zero element \((\theta_B, 0) \) of \(B \times K \).

Moreover, let \(M \) be a \(B \)-module with basis \(\{e_1, \ldots, e_m\} \). Then the map \(\alpha : M \times M \rightarrow B \times K \), defined by

\[
\alpha(x, y) = \alpha \left(\sum_{i=1}^m (x_i e_i + \lambda_i e_i), \sum_{i=1}^m (y_i e_i + \mu_i e_i) \right) := \sum_{i=1}^m (x_i, \lambda_i)(y_i, \mu_i)^*
\]

for every \(x, y \in M \), defines a \((B \times K) \)-valued positive definite Hermitian inner product on \(M \).

Proof. Remind, that every \(B \)-module with basis \(\{e_1, \ldots, e_m\} \) is also a \((B \times K)\)-module with the same basis and that every \(B \)-linear map is also \((B \times K)\)-linear (see [2, Proof of Corollary 3, p. 162]). Moreover, suppose that \((b, \lambda)(b, \lambda)^* = (\theta_B, 0) \). Then we have \((bb^* + \lambda^* b + \lambda b^*, \lambda \lambda^*) = (\theta_B, 0) \) (\(\lambda^* \) stands for the conjugate of \(\lambda \in K \)). Since \(\lambda \lambda^* = |\lambda|^2 \), we get \(\lambda = 0 \). Hence, \((b, \lambda)(b, \lambda)^* = (\theta_B, 0) \) if and only if \(bb^* = \theta_B \). By condition (a) we see that
\((b, \lambda)(b, \lambda)^\ast = (\theta_B, 0) \) if and only if \((b, \lambda) = (\theta_B, 0) \). Thus, taking \(A := B \times \mathbb{K} \), we are in the situation of Lemma 2.1. Hence, the claim follows from Lemma 2.1. \(\Box \)

3. ON THE MATRIX ASSOCIATED WITH A HERMITIAN INNER PRODUCT

Suppose again that \(A \) is a unital algebra. With every Hermitian inner product \(\alpha \) on an \(A \)-module \(M \) with basis \(\{e_1, \ldots, e_m\} \) (i.e., \(M \) is a free \(A \)-module of rank \(m \)), we can associate its matrix \(M_\alpha \) as follows:

\[
M_\alpha := (m_{i,j}), \text{ where } m_{i,j} = \alpha(e_i, e_j) \text{ for every } i, j \in \{1, \ldots, m\}.
\]

It is known that for a \(\ast \)-algebra \(A \) and \(A \)-valued square matrix \(M = (n_{i,j}) \), one defines \(M^\ast = (n_{j,i}) \), where \(n_{i,j} = m_{j,i}^\ast \) for every \(i \in \{1, \ldots, m\} \) and every \(j \in \{1, \ldots, m\} \). Since for a Hermitian inner product \(\alpha \) we have \(\alpha(e_i, e_j) = \alpha(e_j, e_i)^\ast \) for every \(i \in \{1, \ldots, m\} \) and every \(j \in \{1, \ldots, m\} \), then it is clear that \(M^\ast = M_\alpha \), i.e., \(M_\alpha \) is Hermitian (alias, self-adjoint). From the condition (4) of a Hermitian inner product, it follows by [5, Proposition 12, p. 385] (see also [6, Proposition 6.1, p. 465 together with Proposition 4.16, p. 456]), that \(M_\alpha \) is invertible. Moreover, for any

\[
x = \sum_{i=1}^{m} x_i e_i \quad \text{and} \quad y = \sum_{i=1}^{m} y_i e_i
\]

we have \(\alpha(x, y) = (x_1 x_2 \ldots x_m)M_\alpha(y_1^\ast y_2^\ast \ldots y_m^\ast)^T \), where \((z_1 z_2 \ldots z_m)^T \) denotes the transpose matrix of the matrix \((z_1 z_2 \ldots z_m) \) with one row and \(m \) columns, i.e., \((z_1 z_2 \ldots z_m)^T \) is a matrix with \(m \) rows and 1 column.

Take any Hermitian invertible \((m \times m) \)-matrix \(H = (h_{i,j}) \) and define a map \(\beta : M \times M \rightarrow A \) by setting

\[
\beta \left(\sum_{i=1}^{m} a_i e_i, \sum_{i=1}^{m} b_i e_i \right) := (a_1 a_2 \ldots a_m)H(b_1^\ast b_2^\ast \ldots b_m^\ast)^T.
\]

Then it is clear that \(\beta \) is \(A \)-homogeneous and \(\mathbb{K} \)-sesquilinear. Next we show that the map \(\phi : M \rightarrow \text{Hom}_A(M, A) \), defined by

\[
\left[\phi \left(\sum_{i=1}^{m} a_i e_i \right) \right] \left(\sum_{i=1}^{m} b_i e_i \right) := \beta \left(\sum_{i=1}^{m} b_i e_i, \sum_{i=1}^{m} a_i e_i \right)
\]

is a bijection.

Suppose that

\[
\phi(m_a) = \phi \left(\sum_{i=1}^{m} a_i e_i \right) = \phi \left(\sum_{i=1}^{m} b_i e_i \right) = \phi(m_b)
\]

for some \(m_a, m_b \in M \). Then

\[
\sum_{i=1}^{m} h_{1,i} a_i^\ast = [\phi(m_a)](e_1) = [\phi(m_b)](e_1) = \sum_{i=1}^{m} h_{1,i} b_i^\ast,
\]

\[
\sum_{i=1}^{m} h_{2,i} a_i^\ast = [\phi(m_a)](e_2) = [\phi(m_b)](e_2) = \sum_{i=1}^{m} h_{2,i} b_i^\ast,
\]

\[
\ldots
\]
\[
\sum_{i=1}^{m} h_{m,i} a_i^* = [\phi(m_a)](e_m) = [\phi(m_b)](e_m) = \sum_{i=1}^{m} h_{m,i} b_i^*.
\]

Hence,
\[
\sum_{i=1}^{m} h_{ji} (a_i^* - b_i^*) = \theta_A
\]
for every \(j \in \{1, \ldots, m\} \). If we denote by \(H_i \) the \(i \)-th column of the matrix \(H \), then we get
\[
\sum_{i=1}^{m} H_i (a_i^* - b_i^*) = (\theta_A \theta_A \ldots \theta_A)^T.
\]

If \(a_i^* - b_i^* \neq \theta_A \) for at least one value of \(i \), then the columns of \(H \) are linearly dependent and \(H \) can not be invertible. Since \(H \) was assumed to be invertible, we must have \(a_i^* - b_i^* = \theta_A \) for every \(i \in \{1, \ldots, m\} \) from which \(m_a = m_b \) and \(\phi \) is one-to-one.

Take any \(\psi \in \text{Hom}_A(M, A) \). Since \(H \) is invertible, \(H^{-1} \) exists. Take
\[
x := \sum_{i=1}^{m} x_i e_i,
\]
where \((x_1 x_2 \ldots x_m)^T := H^{-1}(\psi(e_1)^* \psi(e_2)^* \ldots \psi(e_m)^*)^T \). Then \([\phi(x)](y) = \psi(y) \) for every \(y \in M \). Hence, \(\phi \) is onto. Consequently, \(\phi \) is a bijection.

Thus, \(\beta \), defined above, is a Hermitian inner product. Moreover, the matrix of \(\beta \) is actually \(H \), i.e., \(M_\beta = H \).

By the facts we just obtained, we have the following result.

Lemma 3.1. Let \(A \) be a unital \(\ast \)-algebra and \(M \) a free \(A \)-module of rank \(m \). Then there exists a bijection between the sets of Hermitian inner products on \(M \) and \(A \)-valued Hermitian invertible \((m \times m)\)-matrices.

By Lemma 3.1, we have the following result.

Corollary 3.2. Let \(B \) be a non-unital \(\ast \)-algebra and \(M \) a free \(B \)-module of rank \(m \). Then there exists a bijection between the sets of Hermitian inner products on \(M \) and \((B \times \mathbb{K})\)-valued Hermitian invertible \((m \times m)\)-matrices.

Proof. Since every \(B \)-module is also a \((B \times \mathbb{K})\)-module with the same basis, then taking \(A := B \times \mathbb{K} \), we are in the situation of Lemma 3.1. \(\square \)

Notice, that for the Hermitian inner product \(\alpha \), defined in Lemma 2.1 or Corollary 2.2, the matrix \(M_\alpha \), associated with \(\alpha \), is an identity matrix.

Definition 3.3. Let \(A \) be a unital \(\ast \)-algebra and \(M \) a free \(A \)-module of rank \(m \). We say that two Hermitian inner products, \(\alpha \) and \(\beta \) on \(M \), are equivalent, if there exists an invertible \((m \times m)\)-matrix \(N \) such that \(M_\alpha = N^* M_\beta N \).

Notice, that if for any Hermitian inner product \(\beta \) there exists a Hermitian invertible matrix \(N \) such that \(M_\beta = NN = N^2 \), then \(\beta \) is equivalent to \(\alpha \) defined in Lemma 2.1.
Let A be a topological algebra. A sequence $(x_n)_{n \in \mathbb{N}}$ in A is a Mackey–Cauchy sequence if there exists a bounded and balanced set U in A such that for every $\epsilon > 0$ there exists $N_\epsilon \in \mathbb{N}$ such that $x_n - x_m \in \epsilon U$ whenever $n, m > N_\epsilon$.

The algebra A is sequentially Mackey complete (one could also use the term Mackey σ-complete) if every Mackey–Cauchy sequence in A converges in A.

Proposition 4.1. Let $m \in \mathbb{N}$ and A be a sequentially Mackey complete topological algebra. Then the algebra $M_m(A)$ of all $(m \times m)$-matrices with elements from A is also sequentially Mackey complete.

Proof. The topology in the algebra $M_m(A)$ of all A-valued $(m \times m)$-matrices is induced by a product topology, i.e., a basis of this topology consists of sets

$$U_{O_1,\ldots,O_m} = \{M = (m_{ij}) \in M_m(A) : m_{ij} \in O_{(i-1)m+j}\},$$

where O_1,\ldots,O_m vary in a basis of the topology of A.

Take any Mackey–Cauchy sequence $(M_n)_{n \in \mathbb{N}} = ((m^n_{ij}))_{n \in \mathbb{N}}$ in $M_m(A)$. Then the sequence $(m^n_{ij})_{n \in \mathbb{N}}$ is a Mackey–Cauchy sequence in A for each fixed $i, j \in \{1,\ldots,m\}$. Indeed, let U be a bounded and balanced set in $M_m(A)$ such that for every $\epsilon > 0$ there exists $N_\epsilon \in \mathbb{N}$ with $M_k - M_l \in \epsilon U$ whenever $k, l > N_\epsilon$. For each $i, j \in \{1,\ldots,m\}$ take $V_{ij} := \{m_{ij} \in A : (m_{ij}) \in U\}$. Then all sets V_{ij} are balanced and bounded in A because U is balanced and bounded in $M_m(A)$. Now it is clear that $m^n_{ij} - m^l_{ij} \in \epsilon V_{ij}$ whenever $k, l > N_\epsilon$. Hence, there exists balanced and bounded sets V_{ij} and numbers N_ϵ for every $\epsilon > 0$ such that the conditions of Mackey–Cauchy sequence are fulfilled.

Since $(m^n_{ij})_{n \in \mathbb{N}}$ is a Mackey–Cauchy sequence in A for each $i, j \in \{1,\ldots,m\}$ and A is sequentially Mackey complete, then $(m^n_{ij})_{n \in \mathbb{N}}$ converges in A to some element $s_{ij} \in A$ for each $i, j \in \{1,\ldots,m\}$. Take $S := (s_{ij}) \in M_m(A)$. Then $(M_n)_{n \in \mathbb{N}}$ converges to S in $M_m(A)$. Hence, $M_m(A)$ is sequentially Mackey complete as well.

Let us recall, that for an element a in a topological algebra A its radius of boundedness is defined as

$$\beta(a) := \inf \left\{ \lambda > 0 : \left(\frac{a}{\lambda} \right)^n : n \in \mathbb{N} \right\} \text{ is bounded in } A.$$

We recall also that the terms ”a is Hermitian” and ”a is self-adjoint” are synonyms. In [1, Corollary 2.8], it was proved the following.

Theorem 4.2. Let A be a unital sequentially Mackey complete topological algebra. If $a \in A$ satisfies the condition $\beta(a - e_A) < 1$, then there exists an element $b \in A$ such that $b^2 = a$. In particular, when A is a unital sequentially Mackey complete topological $*$-algebra with continuous involution and a is self-adjoint, then b is also self-adjoint.

\[2\text{It is clear that if } A \text{ is unital, then also } M_m(A) \text{ is unital because the unit element in } M_m(A) \text{ is the identity matrix.}\]
Let A be a topological algebra and $m \in \mathbb{N}$. For every $i, j \in \{1, \ldots, m\}$ define the projections $p_{i,j} : M_m(A) \to A$ by $p_{i,j}(M) = m_{ij}$ for every $M = (m_{ij}) \in M_m(A)$. A map $f : M_m(A) \to M_m(A)$ is continuous if and only if all of its projections are continuous, i.e., f is continuous if and only if $p_{i,j} \circ f$ is continuous for every $i, j \in \{1, \ldots, m\}$.

For the next result, see also [3, Lemma 5.3, p. 196], where the continuity of the involution of a locally m-convex $*$-algebra is inherited to the algebra of all infinite matrices with finite support and entries from A.

Lemma 4.3. Let A be a topological $*$-algebra and $m \in \mathbb{N}$. The involution on $M_m(A)$ is continuous if and only if the involution is continuous on A.

Proof. Suppose, that the involution $i_A : A \to A$, defined by $i_A(a) = a^*$ for every $a \in A$, is continuous. Consider the involution $i_m : M_m(A) \to M_m(A)$ defined by $i_m(M) = M^*$ for every $M \in M_m(A)$. Then $(p_{i,j} \circ i_m)(M) = m_{ji}^*$ for every $M = (m_{ij}) \in M_m(A)$. Let $T : M_m(A) \to M_m(A)$ be the transpose function, i.e., $T(M) = T((m_{ij})) = (m_{ji}) = M^T$ for every $M \in M_m(A)$. Then $(i_A \circ p_{i,j} \circ T)(M) = m_{ji}^*$ for every $M = (m_{ij}) \in M_m(A)$. Hence, $p_{i,j} \circ i_m = i_A \circ p_{i,j} \circ T$.

The transpose function is continuous because for any neighbourhoods of zero $O_{i,j}$ in A there exist neighbourhoods $U_{i,j} = O_{j,i}$ of zero in A such that if $M \in U_{1,1} \cup U_{1,2} \cup \cdots U_{1,m} \cup U_{2,1} \cup \cdots U_{m,m}$ we get $T(M) \in UO_{1,1} \cup O_{1,2} \cup \cdots O_{1,m} \cup O_{2,1} \cup \cdots O_{m,m}$. The projections $p_{i,j}$ are also continuous. Hence, $i_A \circ p_{i,j} \circ T$ is continuous for every $i, j \in \{1, \ldots, m\}$ as a composition of continuous maps. Therefore, $p_{i,j} \circ i_m$ is continuous for every $i, j \in \{1, \ldots, m\}$. It means that i_m is continuous.

Suppose that i_m is continuous. Take any neighbourhood O of zero in A. Then $P = U_{O_{1,1}} \cup O_{1,2} \cup \cdots \cup O_{m,2} \cup O_{2,2} \cup A$ is a neighbourhood of zero in $M_m(A)$. Since the involution is continuous in $M_m(A)$, then there exists a neighbourhood $V = U_{V_{1,1}} \cup \cdots \cup U_{V_{m,m}}$ of zero in $M_m(A)$ such that $i_m(M) \in P$ for every $M \in V$. Take

$$W := \bigcap_{1 \leq i \leq m^2} V_i$$

and $Z = U_{Z_{1,1}} \cup \cdots \cup U_{Z_{m,m}}$ with $Z_1 = Z_2 = \cdots = Z_{m^2} = W$. Then $i_m(M) \in P$ also for every $M \in Z$. Now, it is clear that $i_A(a) \in O$ for every $a \in W$ because $i_A(a) = p_{i,j} \circ i_m(M_a)$, where M_a is a matrix having all its elements equal to a. Hence, i_A is continuous as well. \(\square\)

For $m \in \mathbb{N}, I_m \equiv I$ denotes the identity matrix in $M_m(A)$. Using Theorem 4.2, we get the following result.

Theorem 4.4. Let A be a unital sequentially Mackey complete topological $*$-algebra with continuous involution, M a free A-module of rank m and $\alpha : M \times M \to A$ a Hermitian inner product on M. If the matrix $M_\alpha \in M_m(A)$ associated with α fulfils the condition $\beta(M_\alpha - I) < 1$, then there exists a Hermitian inner product $\gamma : M \times M \to A$ such that $M_\alpha = M_\gamma^2$.

Proof. By assumption, m is a free A-module of rank m. Consider the $*$-algebra $M_m(A)$. By Proposition 4.1, $M_m(A)$ is a unital sequentially Mackey complete topological algebra. The involution in $M_m(A)$ is continuous by Lemma 4.3.
Let $\alpha : M \times M \to A$ be a Hermitian inner product on M and let its matrix M_α fulfil the condition $\beta(M_\alpha - I) < 1$. Then, by the first part of Theorem 4.2, there exists a matrix $N \in M_m(A)$ such that $N^2 = M_\alpha$.

Since the involution on $M_m(A)$ is continuous and M_α is a Hermitian matrix, N is Hermitian, by the second part of Theorem 4.2. Moreover, since M_α is invertible, N must be also invertible (its inverse is $N^{-1} = M_\alpha^{-1}N$). Now, by Lemma 3.1, we get that N is actually a matrix of some Hermitian inner product $\gamma : M \times M \to A$, i.e., $N = M_\gamma$. Hence, $M_\alpha = M_\gamma^2$ for some Hermitian inner product γ. \hfill \square

Using Lemma 2.1, we get the following result.

Theorem 4.5. Let A be a unital sequentially Mackey complete topological $*$-algebra with continuous involution for which the following conditions are fulfilled:

- (a) If $a \in A$, then $aa^* = \theta_A$ if and only if $a = \theta_A$.
- (b) If $n \in \mathbb{N}$ and $a_1, \ldots, a_n \in A$, then $S_{PA}(\sum_{i=1}^n a_i a_i^*) \subset [0, \infty)$.
- (c) The only self-adjoint element $a \in A$ with $S_{PA}(a) = \{0\}$ is the zero element θ_A of A.

Moreover, let M be a free A-module of rank m. Then all Hermitian inner products $\delta : M \times M \to A$, with matrices M_δ such that $\beta(M_\delta - I) < 1$, are mutually equivalent.

Proof. Let δ be a Hermitian inner product for which $\beta(M_\delta - I) < 1$. By Theorem 4.4, there exists a Hermitian inner product $\gamma : M \times M \to A$ such that $M_\gamma^2 = M_\delta$. By Lemma 2.1, we know that there exists an inner product $\alpha : M \times M \to A$ with $M_\alpha = I$. Since M_γ is Hermitian, then $M_\gamma^* = M_\gamma$. Therefore, $M_\delta = M_\gamma^2 = M_\gamma^* M_\gamma = M_\gamma^* I M_\gamma = M_\gamma^* M_\alpha M_\gamma$. Hence, the Hermitian inner products δ and α are equivalent.

Let $\kappa : M \times M \to A$ be another Hermitian inner product with $\beta(M_\kappa - I) < 1$. As before, we can now show that κ and α are equivalent. Hence, κ is equivalent to δ. Therefore, all such Hermitian inner products δ with $\beta(M_\delta - I) < 1$ are mutually equivalent. \hfill \square

Let B be a non-unital algebra, $m \in \mathbb{N}$ and J denote the identity matrix in the algebra $M_m(B \times \mathbb{K})$. Suppose that the involution $i_B : B \to B$, defined by $i_B(b) := b^*$ for every $b \in B$, is continuous on B. Take any neighbourhood O of zero in $B \times \mathbb{K}$. Then there exist neighbourhoods of zero U in B and V in \mathbb{K} such that $U \times V \subset O$. Since involution is continuous on B and \mathbb{K}, there exist neighbourhoods of zero W in B and Z in \mathbb{K} such that $i_B(b) \in U$ for every $b \in W$ and $i_{\mathbb{K}}(\lambda) \in V$ for every $\lambda \in Z$ (here $i_{\mathbb{K}}$ denotes the involution on \mathbb{K}). Denote the involution in $B \times \mathbb{K}$ by $i_{B \times \mathbb{K}}$. Since $P := U \times V$ is a neighbourhood of zero in $B \times \mathbb{K}$ and since $i_{B \times \mathbb{K}}((b, \lambda)) \in O$ for every $(b, \lambda) \in P$, then the involution $i_{B \times \mathbb{K}}$ in $B \times \mathbb{K}$ is also continuous.

From the last two Theorems we can have the following results in nonunital case.

Corollary 4.6. Let B be a non-unital sequentially Mackey complete topological $*$-algebra with continuous involution, M a free B-module of rank m and
\(\alpha : M \times M \to B \times \mathbb{K} \) a Hermitian inner product on \(M \). If the matrix \(M_\alpha \in M_m(B \times \mathbb{K}) \), associated with \(\alpha \), fulfils the condition \(\beta(M_\alpha - J) < 1 \), then there exists a Hermitian inner product \(\gamma : M \times M \to B \times \mathbb{K} \) such that \(M_\alpha = M_\gamma \).

Proof. Since \(\mathbb{K} \) is complete, it is also Mackey complete. By assumption, \(B \) is sequentially Mackey complete, so \(B \times \mathbb{K} \), endowed with the product topology, turns to be Mackey complete. For the latter, one can argue as in the proof of Proposition 4.1, that \(B \times \mathbb{K} \) is Mackey complete. Since every \(B \)-module with \(m \) elements in its basis is also a \((B \times \mathbb{K}) \)-module with the same basis, then we are in the context of Theorem 4.4, if we take \(A := B \times \mathbb{K} \). Hence, the claim follows by Theorem 4.4. \(\square \)

Corollary 4.7. Let \(B \) be a non-unital sequentially Mackey complete topological \(\ast \)-algebra with continuous involution for which the following conditions are satisfied:

(a) If \(b \in B \), then \(bb^* = \theta_B \) if and only if \(b = \theta_B \).
(b) If \(n \in \mathbb{N} \), \(b_1, \ldots, b_n \in B \) and \(\lambda_1, \ldots, \lambda_n \in \mathbb{K} \), then
\[
\mathrm{Sp}_{B \times \mathbb{K}} \left(\sum_{i=1}^{n} (b_i, \lambda_i)(b_i, \lambda_i)^* \right) \subset [0, \infty).
\]
(c) The only self-adjoint element \((b, \lambda) \in B \times \mathbb{K} \) with \(\mathrm{Sp}_{B \times \mathbb{K}}((b, \lambda)) = \{0\} \) is the zero element \((\theta_B, 0) \) of \(B \times \mathbb{K} \).

Moreover, let \(M \) be a free \(B \)-module of rank \(m \). Then all Hermitian inner products \(\delta : M \times M \to B \times \mathbb{K} \) with matrices \(M_\delta \) such that \(\beta(M_\delta - J) < 1 \) are mutually equivalent.

Proof. Using the same argumentation as in the proofs of Corollaries 2.2 and 4.6, we see that by taking \(A := B \times \mathbb{K} \), we are in the situation of Theorem 4.5, thus the assertion follows. \(\square \)

Acknowledgements. The authors would like to thank the referee for several useful remarks and suggestions which improved the quality of the present paper.

References

\[1, 2\] 2-615 Liivi Str., Institute of Mathematics, Faculty of Mathematics and Computer Science, University of Tartu, 50409 Tartu, Estonia.

E-mail address: mart.abel@ut.ee
E-mail address: mati.abel@ut.ee