Abstract. We give a topological classification of the orbit space of cohomogeneity two isometric actions on flat Riemannian manifolds.

Key words: Orbit space; isometry; Riemannian manifold.

1 Introduction

Let $G \times M \rightarrow M$ be a differentiable action of a Lie group G on a differentiable manifold M and consider the orbit space $M \over G$, with the quotient topology. The dimension of $M \over G$, which we will denote by $\text{Coh}(M,G)$, is called the cohomogeneity of the action of G on M. The study of orbit spaces has many important applications in invariant function theory and G-invariant variational problems associated to M. Many G-invariant objects associated to M can be related to similar objects associated to the orbit space.

Therefore, we can effectively reduce many problems about G-invariant objects of M to generally easier problems on $M \over G$. Because of this motivation, many mathematicians studied topological properties of the orbit spaces of Lie group actions on manifolds. A pioneer theorem in this area is the following theorem proved by P. Mostert in 1957 ([11]): If M is a differentiable manifold and G is a compact Lie group acting on M such that $\text{Coh}(M,G) = 1$, then the orbit space $M \over G$ is homeomorphic to one of the spaces $[0, 1], (0, 1), S^1$ or \mathbb{R}.

This theorem has been generalized to noncompact Lie groups with proper actions on manifolds. Moreover, if M is endowed with a Riemannian metric, and G is a connected and closed subgroup of the isometries of M, which acts by cohomogeneity one on M, there are more interesting results about the orbit space and orbits (see [10], [11], [13]). It is proved in [13] that if M is a Riemannian manifold of negative curvature and G is a connected and closed subgroup of isometries of M, acting on M with $\text{Coh}(M,G) = 1$, then the orbit space is not homeomorphic to $[0, 1]$, so by (generalized) Mostert’s theorem, it would be homeomorphic to $(0, 1)$ or S^1 or \mathbb{R}, and if in addition M is simply connected then the orbit space is homeomorphic to $(0, 1)$.
or \mathbb{R}. This result, generalized to flat Riemannian manifolds in [10], and recently it is proved for Riemannian manifolds of non-positive curvature. To extend Mostert’s theorem, it is natural to ask, what may be the orbit space \mathbb{M}, when $\text{Coh}(\mathbb{M}, G) = 2$. There is no classification for orbit spaces of cohomogeneity two G-manifolds in general. Cohomogeneity two actions of compact Lie groups on \mathbb{R}^n, $n > 1$, are polar (in the sense of Dadok) and all such actions and their orbits are classified (see [12]). It is clear in this case that the orbit space is homeomorphic to plane or half-plane. Also, it is proved in [8] that if G is a connected (compact or non-compact) group of the isometries of \mathbb{R}^n such that $\text{Coh}(\mathbb{R}^n, G) = 2$, then the orbit space \mathbb{R}^n / G is homeomorphic to plane or half-plane. Classification of orbit spaces of cohomogeneity two actions on the standard sphere S^n has been described in [1].

This article follows a series of papers [6]-[9], where we are trying to study orbits and orbit spaces of cohomogeneity two Riemannian manifolds under conditions on curvature. In [7] the following theorem is proved which gives a topological description of cohomogeneity two flat Riemannian manifolds and their orbits.

Theorem A. Let M^n, $n \geq 3$, be a complete connected nonsimply connected and flat Riemannian manifold, which is of cohomogeneity two under the action of a closed and connected Lie group G of isometries. Then, one of the following is true:

(a) $\pi_1(M) = \mathbb{Z}$ and each principal orbit is isometric to $S^{n-2}(c)$, for some $c > 0$ (c depends on orbits).

(b) There is a positive integer l, such that $\pi_1(M) = \mathbb{Z}^l$ and one of the following is true:

(b1) There is a positive integer m, $2 < m < n$, such that each principal orbit is covered by $N^{m-2}(c) \times \mathbb{R}^{n-m}$, where $N^{m-2}(c)$ is a homogeneous hypersurface of $S^{m-1}(c)$ ($c > 0$ depends on orbits). There is a unique orbit diffeomorphic to $T^l \times \mathbb{R}^{n-m-l}$.

(b2) Each principal orbit is covered by $S^r \times \mathbb{R}^{n-r-2}$, for some positive integer r.

(b3) Each principal orbit is covered by $H \times \mathbb{R}^{n-m}$, such that H is a helix in \mathbb{R}^m. There is an orbit diffeomorphic to $T^t \times \mathbb{R}^t$, for some non-negative integer t.

(c) Each orbit is diffeomorphic to $\mathbb{R}^t \times T^t$, for some non-negative integer t.

To complete the study of flat cohomogeneity two Riemannian manifolds, it remains to characterize the orbit space, which is the aim of the present paper. For any flat surface S there exists a cohomogeneity two flat Riemannian G-manifold M such that all orbits are flat and $\frac{M}{G}$ is homeomorphic to S (put $M = S \times \mathbb{R}^n$, $G = \{I\} \times H$ such that I is the identity map on S and H is a closed and connected subgroup of $\text{Iso}(\mathbb{R}^n)$ which acts transitively on \mathbb{R}^n).

Thus, study of the orbit space of cohomogeneity two flat Riemannian manifolds is interesting when there are some non-flat orbits. We will prove the following theorem.

Theorem B. Let M be a flat Riemannian manifold and G be a closed and connected subgroup of the isometries of M such that $\text{Coh}(M, G) = 2$. If there are some
Orbit space of cohomogeneity two manifolds

non-flat orbits then $\frac{M}{G}$ is homeomorphic to one of the following spaces:

$$[0, +\infty) \times \mathbb{R}, S^1 \times \mathbb{R}, S^1 \times [0, \infty), \mathbb{R}^2$$

2 Preliminaries

In the following, M^n is a Riemannian manifold of dimension n, G is a closed and connected subgroup of $\text{Iso}(M)$, and $\pi : M \rightarrow \frac{M}{G}$ denotes the projection on to the orbit space. We know that the fixed point set of the action of G on M, given by

$$M^G = \{ x \in M : G(x) = x \}$$

is a totally geodesic submanifold of M.

We will write $A = B$ if A and B are homeomorphic topological spaces, isomorphic groups or diffeomorphic manifolds.

Fact 2.1. If $\text{Coh}(G, M) = m \geq 1$ then there are two types of points in M called principal and singular points (for definition and details about singular and principal points, we refer to [1] and [13]. If x is a principal(singular) point then $\pi(x)$ is an interior(boundary) point of $\frac{M}{G}$. Also, if x is a principal point, the orbit $G(x)$ is called a principal (singular) orbit and we have $\dim G(x) = n - m$ (dim $G(x) \leq n - m$). The union of all principal orbits is an open and dense subset of M.

Remark 2.2. If $\text{Coh}(G, \mathbb{R}^n) = 1$ then one of the following is true:

1. All orbits are isometric to \mathbb{R}^{n-1}. So, by suitable choice of coordinates, each orbit will be equal to $\{b\} \times \mathbb{R}^{n-1}$ for some $b \in \mathbb{R}$ related to the orbit, and $\frac{\mathbb{R}^n}{G} = \mathbb{R}$.
2. Each principal orbit is diffeomorphic to $S^{n-m-1} \times \mathbb{R}^m$ for some $m \geq 0$, there is a unique singular orbit isometric to \mathbb{R}^m and $\frac{\mathbb{R}^n}{G} = [0, +\infty)$.
3. If G is compact then each principal orbit is diffeomorphic to S^{n-1}, the unique singular orbit is a one point set, and $\frac{\mathbb{R}^n}{G} = [0, \infty)$.

Proof. See [10], proof of the theorems 3.1 and 3.5. □

Definition 2.3. If $\text{Coh}(G, \mathbb{R}^n) = 1$ then one of the following is true:

1. All orbits are isometric to \mathbb{R}^{n-1}. So, by suitable choice of coordinates, each orbit will be equal to $\{b\} \times \mathbb{R}^{n-1}$ for some $b \in \mathbb{R}$ related to the orbit, and $\frac{\mathbb{R}^n}{G} = \mathbb{R}$.
2. Each principal orbit is diffeomorphic to $S^{n-m-1} \times \mathbb{R}^m$ for some $m \geq 0$, there is a unique singular orbit isometric to \mathbb{R}^m and $\frac{\mathbb{R}^n}{G} = [0, +\infty)$.
3. If G is compact then each principal orbit is diffeomorphic to S^{n-1}, the unique singular orbit is a one point set, and $\frac{\mathbb{R}^n}{G} = [0, \infty)$.

Proof. See [10], proof of the theorems 3.1 and 3.5. □

Definition 2.4.
(a) Let G be a connected subgroup of $\text{Iso}(\mathbb{R}^n)$ and d,e be positive integers such that $d + e = n$. If G is not compact and it is a subgroup of $SO(d) \times \mathbb{R}^e$ (direct product), then we say that G is d-helicoidal on \mathbb{R}^n.

(b) Following (a), let

\[K = \{ A \in SO(d) : (A, b) \in G, \text{ for some } b \in \mathbb{R}^e \} \]
\[T = \{ b \in \mathbb{R}^e : (A, b) \in G, \text{ for some } A \in SO(d) \} \]

If $x = (x_1, x_2) \in (\mathbb{R}^d - \{0\}) \times \mathbb{R}^e$, $T(x_2) = \mathbb{R}^e$ and $K(x_1) = S^{d-1}(\|x_1\|)$, then $G(x)$ is called a d-helix around $S^{d-1}(\|x_1\|) \times \mathbb{R}^e$.

Definition 2.5. Let G be a closed and connected subgroup of $\text{Iso}(\mathbb{R}^n)$, $n \geq 3$. We say that G has compact (or helicoidal) factor, if there is an integer $0 < m < n$ and there are Lie groups $G_1 \subset \text{Iso}(\mathbb{R}^{n-m})$, $G_2 \subset \text{Iso}(\mathbb{R}^m)$, such that

1. G_2 is compact (or helicoidal on \mathbb{R}^n).
2. $G \cong G_2 \times G_1$.
3. For some (so each) $x \in \mathbb{R}^{n-m}$, $G_1(x) = \mathbb{R}^{n-m}$.

Corollary 2.6 ([7]). If G is a connected and closed subgroup of $\text{Iso}(\mathbb{R}^n), n \geq 3$, and $\text{Coh}(G, \mathbb{R}^n) = 2$. Then one of the following is true:

1. G is compact. (II) G has compact factor on \mathbb{R}^n. (III) G is helicoidal on \mathbb{R}^n.
2. G has helicoidal factor on \mathbb{R}^n. (V) All G-orbits are Euclidean.

3 **Orbit spaces**

By Lemma 3.6 in [7] and its proof, we get the following fact.

Fact 3.1. If the action of G on \mathbb{R}^n is helicoidal then one of the following assertions is true:

1. G action on \mathbb{R}^n is orbit equivalent to the action of a product $H \times T \subset SO(d) \times \mathbb{R}^e$ on $\mathbb{R}^d \times \mathbb{R}^e$, $d + e = n$, such that each principal H-orbit in \mathbb{R}^d is isometric to $S^{d-1}(r), r > 0$, and T acts by cohomogeneity one on \mathbb{R}^e such that all T-orbits on \mathbb{R}^e are isometric to \mathbb{R}^{e-1}.
2. Each principal G-orbit is isometric to a d-helix around $S^{d-1}(r) \times \mathbb{R}^e$, $e > 1$, $r > 0$, and G acts transitively on $\{0\} \times \mathbb{R}^e = \mathbb{R}^e$.

Fact 3.2. Let M be a Riemannian manifold and \tilde{M} be the Riemannian universal covering of M, by the covering map $k : \tilde{M} \to M$, and let G be a closed and connected subgroup of $\text{Iso}(M)$. Then there is a connected covering \tilde{G} for G such that \tilde{G} acts isometrically on \tilde{M} and the following assertions are true:

1. $\text{Coh}(G, M) = \text{Coh}(\tilde{G}, \tilde{M})$.
2. If $D = \tilde{G}(x)$ is a \tilde{G}-orbit in \tilde{M} then $k(D)$ is a G-orbit in M, and each G-orbit in M is equal to $k(D)$ for some G-orbit D in \tilde{M}.
3. If Δ is the deck transformation group of the covering $k : \tilde{M} \to M$ then for each $\delta \in \Delta$ and each $g \in \tilde{G}$, $\delta \circ g = g \circ \delta$. Thus δ maps \tilde{G}-orbits in \tilde{M} on to G-orbits.
4. $\tilde{M}^{\tilde{G}} = \kappa^{-1}(M^G)$.
Proof. See [1], pages 63-64.

Fact 3.3. Let \(\Delta \) be a discrete subgroup of the isometries of \(\mathbb{R}^m \), \(m > 1 \), and suppose that for each \(a \in \mathbb{R} \), there is \(a_1 \in \mathbb{R} \) such that \(\Delta(\{a\} \times \mathbb{R}^{m-1}) = \{a_1\} \times \mathbb{R}^{m-1} \). Put

\[
\Gamma = \{ \delta \in \Delta : \delta(\{a\} \times \mathbb{R}^{m-1}) = \{a\} \times \mathbb{R}^{m-1} \text{ for all } a \in \mathbb{R} \}.
\]

Then, \(\Gamma \) is a normal subgroup of \(\Delta \) and we have \(\frac{\Delta}{\Gamma} = \mathbb{Z} \).

Proof. It is clear from the definition of \(\Gamma \) that \(\Gamma \) is normal in \(\Delta \). Consider the function \(p : \mathbb{R}^m (= \mathbb{R} \times \mathbb{R}^{m-1}) \to \mathbb{R} \) defined by \(p(a, x) = a \), and put

\[
\theta : \Delta \times \mathbb{R} \to \mathbb{R}, \quad \theta(\delta, a) = p\delta(a, o), \quad o = (0, ..., 0) \in \mathbb{R}^{m-1}.
\]

Since for all \(a \in \mathbb{R} \), \(\Delta(\{a\} \times \mathbb{R}^{m-1}) = \{a_1\} \times \mathbb{R}^{m-1} \) for some \(a_1 \) related to \(a \), then for each \(x = (a, b) \in \mathbb{R} \times \mathbb{R}^{m-1} \) and \(\delta \in \Delta \), we have \(p\delta(a, b) = p\delta(a, o) \), so

\[
p\delta(x) = p\delta(px, o) \quad (*)
\]

Therefore, if \(\delta_1, \delta_2 \in \Delta \) then

\[
\theta(\delta_1, \theta(\delta_2, a)) = \theta(\delta_1, p\delta_2(a, o)) = p\delta_1(p\delta_2(a, o), o).
\]

We get from (*) that

\[
p\delta_1(p\delta_2(a, o), o) = p\delta_1\delta_2(a, o).
\]

Thus, \(\theta(\delta_1, \theta(\delta_2, a)) = \theta(\delta_1\delta_2, a) \). This means that \(\theta \) is an action of \(\Delta \) on \(\mathbb{R} \). The action of \(\Delta \) induces an effective action of \(\frac{\Delta}{\Gamma} \) on \(\mathbb{R} \), which is clearly an isometric action and no element of \(\frac{\Delta}{\Gamma} \) has a fixed point in \(\mathbb{R} \). So, \(\frac{\Delta}{\Gamma} \) can be considered as a discrete subgroup of \((\mathbb{R}, +) \) and must be isomorphic to \((\mathbb{Z}, +) \). \(\square \)

Lemma 3.4 ([9]). If \(M \) is a connected and complete cohomogeneity \(k \) Riemannian \(G \)-manifold then \(k > \dim M^G \).

Theorem 3.5 ([8]). If \(G \) is a closed and connected subgroup of \(\text{Iso}\mathbb{R}^n \), \(n \geq 2 \), and \(\text{Coh}(G, \mathbb{R}^n) = 2 \), then \(\mathbb{R}^n_G = [0, \infty) \times \mathbb{R} \) or \(\mathbb{R}^2 \).

Lemma 3.6. Let \(M \) be a flat Riemannian manifold, \(\dim M > 2 \), and let \(G \) be a closed and connected subgroup of the isometries of \(M \). If \(\text{Coh}(M, G) = 2 \) and \(M^G \neq \emptyset \), then \(\frac{M}{G} \) is homeomorphic to one of the following spaces:

\[
[0, +\infty) \times \mathbb{R}, S^1 \times [0, \infty), \mathbb{R}^2
\]

Proof. Consider \(\widetilde{M} = \mathbb{R}^n \) the universal Riemannian covering manifold of \(M \), and use the symbols used in Fact 3.2. Since \(M^G \neq \emptyset \) then by Fact 3.2(4), \(\widetilde{M}^G \neq \emptyset \). Put \(L = \widetilde{M}^G \) and let \(m = \dim L \). By Lemma 3.4, we have \(2 > m \), so \(m = 0 \) or \(m = 1 \).

If \(m = 0 \) then from the fact that \(\widetilde{M}^G \) is a (connected) totally geodesic submanifold
of \(\mathbb{R}^n\), we get that \(\overline{M^G}\) is a one point set and by Fact 3.2(4), \(M\) is simply connected, so \(M = \mathbb{R}^n\), \(G = \tilde{G}\). Then, by Theorem 3.5, \(\overline{M^G} = [0, \infty) \times \mathbb{R}\) or \(\mathbb{R}^2\).

If \(m = 1\) and \(M\) is not simply connected, then \(L\) is a line in \(\mathbb{R}^n\). Since the elements of \(\tilde{G}\) and \(\Delta\) are commutative, then \(\Delta(L) = L\). If \(a \in L\), denote by \(W_a\) the hyperplane of \(\mathbb{R}^n\) which is perpendicular to \(L\) at \(a\). Without lose of generality we can suppose that \(L = \{a\} \times \mathbb{R} \subset \mathbb{R}^{n-1} \times \mathbb{R} = \mathbb{R}^n\). Since \(\tilde{G}\) leaves \(L\) invariant point wisely, then \(\tilde{G}\) decomposes as \(\tilde{G} = \	ilde{G} \times \{I\}\), where \(\tilde{G} \subset SO(n-1)\) and \(I\) is the identity map on \(\mathbb{R}\). So, for all \(a \in L\) and all \(x \in W_a\), \(\tilde{G}(x) \subset W_a\). Now, it is easy to show that the following map is a homeomorphism:

\[
\left\{ \begin{array}{ll}
\psi : \mathbb{R}^n \rightarrow \mathbb{R}^{n-1} \times \mathbb{R}^2 \\
\psi(G(x)) = (\tilde{G}(x_1), x_2), \quad x = (x_1, x_2) \in \mathbb{R}^{n-1} \times \mathbb{R}
\end{array} \right.
\]

Since \(\text{Coh}(\mathbb{R}^{n-1}, \tilde{G}) = 1\) then by Remark 2.2(3), \(\mathbb{R}^{n-1}_G = [0, \infty)\), so \(\mathbb{R}^n_G = [0, \infty) \times \mathbb{R}\).

Since the members of \(\Delta\) map \(\tilde{G}\)-orbits to \(\tilde{G}\)-orbits, then by curvature reasons, for each \((x_1, x_2) \in \mathbb{R}^{n-1} \times \mathbb{R}\), \(\Delta(\tilde{G}(x_1), x_2) = (\tilde{G}(x_1), y_2)\) for some \(y_2 \in \mathbb{R}\). So, we get from \(\Delta(L) = L\) that \(\Delta\) decomposes as \(\Delta = \{I\} \times \Gamma \subset \text{Iso}(\mathbb{R}^{n-1}) \times \text{Iso}(L)\). Thus \(\Delta\) can be considered as a discrete subgroup of the isometries of \(L = \mathbb{R}\) without fixed point, then \(\Delta = \Gamma\), and we have

\[
\frac{M}{G} = \frac{[0, \infty) \times \mathbb{R}}{\Delta} = [0, \infty) \times \frac{\mathbb{R}}{\Gamma} = [0, \infty) \times S^1.
\]

\(\Box\\

Remark 3.7.

(1) Let \(E = \mathbb{R}^2\) or \([0, \infty) \times \mathbb{R}\), and \(\Gamma\) be a nontrivial discrete subgroup of the isometries of \(E\) such that \(\Gamma(o) = o\), then \(\frac{E}{\Gamma}\) is homeomorphic to \(\mathbb{R}^2\) or \([0, \infty) \times \mathbb{R}\).

(2) If \(\Gamma = \Gamma\) and \(E = [0, \infty) \times \mathbb{R}\), then \(\frac{E}{\Gamma} = [0, \infty) \times S^1\).

Proof. (1) Let \(E = \mathbb{R}^2\) and consider the circles \(S^1(r)\) of radius \(r > 0\) around the origin of \(\mathbb{R}^2\), and put \(S^1(o) = o\). Since \(\Gamma \subset O(2)\) is compact and discrete, it is finite. Consider a point \(a \in S^1(1)\) and let \(\Gamma(a) = \{a_1 = a, a_2, ..., a_n\}\) ordered in clockwise. Then, we have

\[
\Gamma(ra) = \{ra_1, ra_2, ..., ra_n\}, \quad ra \in S^1(r).
\]

If \(b\) is the length of the arc \(\overline{a_1a_2}\) (clockwise arc) on \(S^1(1)\) then the length of the arc \(\overline{ra_1ra_2}\) on \(S^1(r)\) is equal to \(rb\) and we have \(S^1(r) = S^1(rb)\). So,

\[
\frac{\mathbb{R}^2}{\Gamma} = \bigcup_{r \geq 0} S^1(r) = \bigcup_{rb \geq 0} S^1(rb) = \mathbb{R}^2.
\]

Now, let \(E = [0, \infty) \times \mathbb{R}\). We know that the isometries of plane are combinations of three kind of isometries called rotations, reflections respect to lines, gelid reflections (see[3]). Since \(\Gamma(E) = E\) and \(\Gamma(o) = o\) then \(\Gamma\) can only contain a reflection respect to the line \([0, \infty) \times \{0\}\) and the identity, then \(\frac{E}{\Gamma}\) is equal to \([0, \infty) \times [0, \infty)\), which is homeomorphic to \([0, \infty) \times \mathbb{R}\).

(2) Proof is similar to (1). \(\Box\)
4 Theorem B

Proof. Consider \(\tilde{M} = \mathbb{R}^n \) the universal covering manifold of \(M \) and use the symbols of Fact 3.2. Put
\[
\Delta' = \{ \delta \in \Delta : \delta(D) = D \text{ for all } \tilde{G} - \text{orbits } D \text{ in } \mathbb{R}^n \}.
\]

Since \(\Delta' \) is normal in \(\Delta \), we can consider the quotient group \(\tilde{\Delta} = \frac{\Delta}{\Delta'} \). It is not hard to show that \(\tilde{\Delta} \) acts effectively on the orbit space \(\tilde{\Omega} = \mathbb{R}^n / \tilde{G} \) and \(M \tilde{G} = \frac{\Omega}{\tilde{G}} = \frac{\Omega}{\Delta} \). By Corollary 2.6, one of the following cases is true:

a) \(\tilde{G} \) is compact
b) \(\tilde{G} \) is helicoidal

c) \(\tilde{G} \) has compact factor
d) \(\tilde{G} \) has helicoidal factor
e) All orbits are Euclidean.

a) Since \(\tilde{G} \) is compact then \(\tilde{M} \tilde{G} \neq \emptyset \), so \(M \tilde{G} \neq \emptyset \) and we get the result from Theorem 3.6.

b) By Fact 3.1 and by suitable choice of ordinates, two cases may occur:

(1) \(G \) action is orbit equivalent to the action of a product \(S \times T \subset \text{So}(d) \times \mathbb{R}^e \), \(d + e = n \), on \(\mathbb{R}^d \times \mathbb{R}^e \) such that each principal \(S \)-orbit in \(\mathbb{R}^d \) is isometric to \(S^{d-1}(r) \), \(r > 0 \), and \(T \) acts by cohomogeneity one on \(\mathbb{R}^e \) such that all \(T \)-orbits are isometric to \(\mathbb{R}^{e-1} \).

(2) Each principal \(\tilde{G} \)-orbit is isometric to a helicoid around \(S^{d-1}(r) \times \mathbb{R}^e \), \(e > 1 \), \(r > 0 \), and \(\tilde{G} \) acts transitively on \(\{o\} \times \mathbb{R}^e = \mathbb{R}^e \).

In the case (1), we have \(\tilde{\Omega} = \mathbb{R}^n / \tilde{G} = \mathbb{R}^d / S \times \mathbb{R}^e / T \). Thus, by Remark 2.2 (3,1), \(\tilde{\Omega} = [0, \infty) \times \mathbb{R} \). If \(x \in \{o\} \times \mathbb{R} \) then \(\dim \tilde{G}(x) = e - 1 \) and if \(x \notin \{o\} \times \mathbb{R} \) then \(\dim \tilde{G}(x) = d - 1 + e - 1 = d + e - 2 \). Since \(d > 1 \), by dimensional reasons and the fact that each \(\delta \in \Delta \) maps orbits to orbits, we get that \(\Delta(\mathbb{R}^e) = \mathbb{R}^e \). Since \(\tilde{G} \) acts by cohomogeneity one on \(\mathbb{R}^e \) and all orbits are Euclidean, then by Remark 2.2(1), and without lose of generality, we can suppose that each \(\tilde{G} \)-orbit in \(\mathbb{R}^e \) is equal to \(\{b\} \times \mathbb{R}^{e-1} \) for some \(b \in \mathbb{R} \) related to the orbit. Put
\[
\Gamma = \{ \delta \in \Delta : \delta(D) = D, \text{ for all orbits } D \text{ in } \mathbb{R}^e \}.
\]

By Fact 3.3, we have \(\frac{\Gamma}{\Delta} = Z \). It is not hard to show that \(\Gamma = \Delta' \), so \(\tilde{\Delta} = \frac{\Gamma}{\Delta} = \frac{\Omega}{\tilde{G}} = \frac{\Omega}{\tilde{G}} = [0, \infty) \times \mathbb{R} \).

Then \(\frac{M \tilde{G}}{\tilde{G}} = \frac{\Omega}{\tilde{G}} = \frac{\Omega}{\tilde{G}} = [0, \infty) \times S^1 \).

In the case (2), First note that by Theorem 3.5, \(\tilde{\Omega} = \mathbb{R}^n / \tilde{G} = \mathbb{R}^2 \) or \([0, \infty) \times \mathbb{R} \). Since the elements of \(\Delta \) are isometries which map orbits to orbits, then by curvature reasons, \(\Delta(\{o\} \times \mathbb{R}^e) = \{o\} \times \mathbb{R}^e \). Without lose of generality we can suppose that the corresponding point of the orbit \(\{o\} \times \mathbb{R}^e \) on the orbit space \(\mathbb{R}^n / \tilde{G} (= \mathbb{R}^2 \text{ or } [0, \infty) \times \mathbb{R}) \) is the point \(o \) the origin of \(\mathbb{R}^2 \) or \([0, \infty) \times \mathbb{R} \). Then \(o \) is a fixed point of the action of
Then, by Remark 3.7(1), \(\frac{\tilde{\Omega}}{\tilde{\Delta}} = [0, \infty) \times \mathbb{R} \) or \(\mathbb{R}^2 \).

c, d) If \(\tilde{G} \) has compact factor or helicoidal factor, then we have \(\tilde{G} = G_1 \times G_2 \) and \(\mathbb{R}^n = \mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \) such that \(G_1 \) is compact or helicoidal on \(\mathbb{R}^{n_1} \) and \(G_2 \) acts transitively on \(\mathbb{R}^{n_2} \). So, we have

\[
\frac{\mathbb{R}^n}{G} = \frac{\mathbb{R}^{n_1}}{G_1} \times \frac{\mathbb{R}^{n_2}}{G_2} = \mathbb{R}^{n_1}.
\]

The effective action of \(\tilde{\Delta} \) on \(\frac{\mathbb{R}^n}{G} \) induces an effective action of \(\tilde{\Delta} \) on \(\frac{\mathbb{R}^{n_1}}{G_1} \) in the following way:

Each \(G \)-orbit is in the form \(D \times \mathbb{R}^{n_2} \) such that \(D \) is a \(G_1 \)-orbit in \(\mathbb{R}^{n_1} \). For each \(\tilde{\delta} \in \tilde{\Delta} \), we have \(\tilde{\delta}(D \times \mathbb{R}^{n_2}) = D' \times \mathbb{R}^{n_2} \). Put \(\tilde{\delta}(D) = D' \). Then we get the from previous arguments that theorem is true in this case.

e) In this case all \(\tilde{G} \)-orbits in \(\mathbb{R}^n \) are isometric to \(\mathbb{R}^{n-2} \) then each \(G \)-orbit is flat, which is contradiction by assumptions of the theorem.

Acknowledgements. I am very grateful to the organizers of “2018 International Conference on Topology and Its Applications” to give an opportunity for useful discussions about the work.

References

Author’s address:

Reza Mirzaie

Department of Pure Mathematics, Faculty of Science,

Imam Khomeini International University (IKIU), Qazvin, Iran.

E-mail: r.mirzaei@sci.ikiu.ac.ir