Some optimal inequalities on Bochner-Kähler manifolds with Casorati curvatures

C.W. Lee, J.W. Lee

Abstract. The main purpose of this article is to construct optimal inequalities on some submanifolds in a Bochner-Kähler manifold involving Casorati curvatures.

M.S.C. 2010: 53A07, 49K35.
Key words: Bochner tensor; generalized normalized δ-Casorati curvature; Bochner-Kähler manifold; Einstein; slant; invariant; anti-invariant.

1 Introduction

The Bochner tensor was introduced by S. Bochner in Kähler manifolds analogue of the Weyl conformal curvature tensor [1]. The Bochner tensor is equal to the fourth order Chern-Moser curvature tensor of CR-manifolds by Webster [19]. Webster showed that a Bochner-Kähler surface is nothing but a self-dual Kähler surface in Penrose’s theory. A Kähler manifold is said to be Bochner-Kähler if its Bochner curvature tensor vanishes. Bochner-Kähler manifolds with constant scalar curvature are classified in [15]. Moreover, Chen and Dillen investigated geometric characterizations of Bochner-Kähler and Einstein-Kähler spaces of complex space forms by using the δ-invariants $\delta(n_1, n_2, \cdots, n_k)$ and $\hat{\delta}(n_1, n_2, \cdots, n_k)$ in [4]. On the other hand, it is well known that the Casorati curvature of a submanifold in a Riemannian manifold is an extrinsic invariant defined as the normalized square of the length of the second fundamental form, introduced by F. Casorati in [2, 9]. Moreover, there are very interesting optimal inequalities involving Casorati curvatures in [5, 6, 7, 8, 10, 11, 12, 13, 14, 17, 20, 21] for several submanifolds in some space forms with various connections. In our paper, we establish optimal inequalities involving the generalized normalized δ-Casorati curvatures for some submanifolds in a Bochner-Kähler manifold and also characterize those submanifolds for which the equalities hold.

2 Preliminaries

This section gives several basic definitions and notations for our framework based mainly.
Let M^n be an n-dimensional Riemannian submanifold of a Riemannian manifold (\bar{M}, \bar{g}) with the Riemannian metric \bar{g}. Let $K(\pi)$ be the sectional curvature of M associated with a plane section $\pi \subset T_pM$, $p \in M$. Assume that $\{e_1, ..., e_n\}$ is an orthonormal basis of the tangent space T_pM and $\{e_{n+1}, ..., e_m\}$ is an orthonormal basis of the normal space $T_p^\perp M$. Then the scalar curvature τ at p is given by

$$\tau(p) = \sum_{1 \leq i < j \leq n} K(e_i \wedge e_j)$$

and the normalized scalar curvature ρ of M is defined as

$$\rho = \frac{2\tau}{n(n-1)}.$$

We denote by H the mean curvature vector, that is

$$H(p) = \frac{1}{n} \sum_{i=1}^n h(e_i, e_i)$$

and we also set

$$h_{ij}^\alpha = g(h(e_i, e_j), e_\alpha), \quad i, j \in \{1, ..., n\}, \quad \alpha \in \{n+1, ..., m\}.$$

Then it is well-known that the squared mean curvature of the submanifold M in \bar{M} is defined by

$$||H||^2 = \frac{1}{n^2} \sum_{\alpha = n+1}^m \left(\sum_{i=1}^n h_{ii}^\alpha \right)^2$$

and the squared norm of h over dimension n is denoted by C, called the Casorati curvature of the submanifold M. Therefore we have

$$C = \frac{1}{n} \sum_{\alpha = n+1}^m \sum_{i,j=1}^n (h_{ij}^\alpha)^2.$$

The submanifold M is called invariantly quasi-umbilical if there exists $m - n$ mutually orthogonal unit normal vectors $\xi_{n+1}, ..., \xi_m$ such that the shape operators with respect to all directions ξ_α have an eigenvalue of multiplicity $n - 1$ and that for each ξ_α the distinguished eigendirection is the same.

Suppose now that L is an s-dimensional subspace of T_pM, $s \geq 2$ and let $\{e_1, ..., e_s\}$ be an orthonormal basis of L. Then the scalar curvature $\tau(L)$ of the s-plane section L is given by

$$\tau(L) = \sum_{1 \leq \alpha < \beta \leq s} K(e_\alpha \wedge e_\beta).$$

and the Casorati curvature $C(L)$ of the subspace L is defined as

$$C(L) = \frac{1}{s} \sum_{\alpha = n+1}^m \sum_{i,j=1}^s (h_{ij}^\alpha)^2.$$
The generalized normalized δ-Casorati curvatures $\delta_C(t; n-1)$ and $\hat{\delta}_C(t; n-1)$ of the submanifold M^n are defined for any positive real number $r \neq n(n-1)$ as

$$[\delta_C(t; n-1)]_p = tC_p + \frac{(n-1)(n+t)(n^2 - n - t)}{nt} \inf \{ C(L) | L \text{ a hyperplane of } T_p M \},$$

if $0 < t < n^2 - n$, and

$$[\hat{\delta}_C(t; n-1)]_p = tC_p - \frac{(n-1)(n+t)(t - n^2 + n)}{nt} \sup \{ C(L) | L \text{ a hyperplane of } T_p M \},$$

if $t > n^2 - n$.

If ∇ is the Levi-Civita connection on \overline{M} and ∇ is the covariant differentiation induced on M, then the Gauss and Weingarten formulas are given by:

$$\nabla_X Y = \nabla_X Y + h(X,Y), \forall X,Y \in \Gamma(TM)$$

and

$$\nabla_X N = -A_N X + \nabla^\perp_X N, \forall X \in \Gamma(TM), \forall N \in \Gamma(TM^\perp)$$

where h is the second fundamental form of M, ∇^\perp is the connection on the normal bundle and A_N is the shape operator of M with respect to N. If we denote by \overline{R} and R the curvature tensor fields of ∇ and ∇, then we have the Gauss equation:

$$\overline{R}(X,Y,Z,W) = R(X,Y,Z,W) + \bar{g}(h(X,W),h(Y,Z)) - \bar{g}(h(X,Z),h(Y,W)),$$

(2.1)

for all $X,Y,Z,W \in \Gamma(TM)$.

Assume now that $(\overline{M}^m, \bar{g}, J)$ is an almost Hermitian with an almost complex structure J and a Riemannian metric \bar{g} satisfying for

$$\bar{g}(J \cdot, J \cdot) = \bar{g}(\cdot, \cdot) \quad \text{and} \quad J^2 = -\text{Id},$$

where Id denotes the identity tensor field of type $(1, 1)$ on \overline{M}. Moreover, if the almost complex structure J is parallel with respect to the Levi-Civita connection ∇ of \bar{g}, then $(\overline{M}, \bar{g}, J)$ is said to be a Kähler manifold.

The Bochner curvature tensor on a Kähler manifold is defined by [18]

$$B(X,Y,Z,W) = \overline{R}(X,Y,Z,W) - L(Y,Z)\bar{g}(X,W) - L(X,Z)\bar{g}(Y,W) + L(X,W)\bar{g}(Y,Z) + L(Y,W)\bar{g}(X,Z) + L(JY,W)\bar{g}(JX,Y) + L(JX,W)\bar{g}(JY,Z) + 2L(JY,W)\bar{g}(JX,Y),$$

(2.2)

where

$$L(X,Y) = \frac{1}{2n+4}Ric(X,Y) - \frac{\tau}{8(n+1)(n+2)} \bar{g}(X,Y)$$

and

$$L(X,Y) = L(Y,X), \quad L(JX,Y) = -L(X,JY),$$

(2.3)
for all \(X, Y, Z, W \in \Gamma(TM) \).

Let \((\bar{M}, \bar{g}, J)\) be a Kähler manifold. If the Bochner tensor \(B \) on \(\bar{M} \) vanishes identically, \((\bar{M}, \bar{g}, J)\) is called a Bochner-Kähler manifold. From (2.2), the curvature tensor \(\bar{R} \) of a Bochner-Kähler manifold is given by

\[
\bar{R}(X, Y, Z, W) = L(Y, Z)\bar{g}(X, W) - L(X, Z)\bar{g}(Y, W) \\
+ L(X, W)\bar{g}(Y, Z) - L(Y, W)\bar{g}(X, Z) \\
+ L(JY, Z)\bar{g}(JX, W) - L(JX, Z)\bar{g}(JY, W) \\
+ L(JX, W)\bar{g}(JY, Z) - L(JY, W)\bar{g}(JX, Z) \\
- 2L(JX, Y)\bar{g}(JZ, W) - 2L(JZ, W)\bar{g}(JX, Y).
\]

(2.4)

As a generalization of CR-submanifolds, B.-Y. Chen introduced the notion of slant submanifolds. We introduce the definition of slant submanifolds of Bochner-Kähler manifolds as follows:

Definition 2.1. A submanifold \(M \) of a Bochner-Kähler manifold \((\bar{M}, \bar{g}, J)\) is said to be slant if for any \(p \in M \), the angle \(\theta \) between \(JX \) and \(T_pM \) is constant. In other words, the angle does not depend on the choice of \(p \in M \) and \(X \in T_pM \). The angle \(\theta \in [0, \pi/2] \) is called the slant angle of \(M \) in \(\bar{M} \).

If \(\theta = 0 \) (\(\theta = \pi/2 \)), \(M \) is called an invariant (anti-invariant) submanifold of \(\bar{M} \), respectively. If \(0 < \theta < \pi/2 \), \(M \) is called a proper slant submanifold of \(\bar{M} \).

The following lemma plays a key role in the proof of our theorems.

Lemma 2.1. [16] Let

\[\Gamma = \{(x_1, x_2, \cdots, x_n) \in \mathbb{R}^n : x_1 + x_2 + \cdots + x_n = k\} \]

be a hyperplane of \(\mathbb{R}^n \), and \(f: \mathbb{R}^n \rightarrow \mathbb{R} \) a quadratic form given by

\[f(x_1, x_2, \cdots, x_n) = a \sum_{i=1}^{n-1} (x_i)^2 + b(x_n)^2 - 2 \sum_{1 \leq i < j \leq n} x_ix_j, \quad a > 0, \ b > 0. \]

Then, by the constrained extremum problem, \(f \) has the global extreme as follows:

\[x_1 = x_2 = \cdots = x_{n-1} = \frac{k}{a+1}, \quad x_n = \frac{k}{b+1} = \frac{k(n-1)}{(a+1)b} = \frac{(a-n+2)k}{a+1}, \]

provided that

\[b = \frac{n-1}{a-n+2}. \]

3 Inequalities involving Casorati curvatures

Let \(M \) be a submanifold of a Bochner-Kähler manifold \((\bar{M}, \bar{g}, J)\). Let \(p \in M \) and the set \{\(e_1, \ldots, e_n \)\} and \{\(e_{n+1}, \ldots, e_m \)\} be orthonormal bases of \(T_pM \) and \(T_p^\perp M \), respectively. From (2.4), we have

\[
\bar{R}(e_i, e_j, e_j, e_i) = L(e_j, e_j)\bar{g}(e_i, e_i) + L(e_i, e_i)\bar{g}(e_j, e_j) \\
+ 6L(e_i, Je_j)\bar{g}(e_i, Je_j) - 2L(e_i, Je_j)\bar{g}(e_i, e_i).
\]

(3.1)
From (3.1), we have
\[\sum_{i,j=1}^{n} R(e_i, e_j, e_j, e_i) = (2n - 2) \sum_{i=1}^{n} L(e_i, e_i) + 6 \sum_{i,j=1}^{n} L(e_i, J e_j) \bar{g}(e_i, J e_j)\]

Combining (2.1) and (3.2), we obtain
\[2\tau = n^2 ||H||^2 - ||h||^2 + (2n - 2) \sum_{i=1}^{n} L(e_i, e_i) + 6 \sum_{i,j=1}^{n} L(e_i, J e_j) \bar{g}(e_i, J e_j)\]
\[= n^2 ||H||^2 - nC + (2n - 2) \sum_{i=1}^{n} L(e_i, e_i) + 6 \sum_{i,j=1}^{n} L(e_i, J e_j) \bar{g}(e_i, J e_j)\]

We now consider the following quadratic polynomial in the components of the second fundamental form:
\[P = tC + \frac{(n-1)(n+t)(n^2-n-t)}{nt} C(L) - 2\tau + (2n - 2) \sum_{i=1}^{n} L(e_i, e_i) + 6 \sum_{i,j=1}^{n} L(e_i, J e_j) \bar{g}(e_i, J e_j),\]

where \(L\) is a hyperplane of \(T_p M\). Without loss of generality we can assume that \(L\) is spanned by \(e_1, \ldots, e_{n-1}\). Then we derive
\[P = \sum_{\alpha = n+1}^{m} \sum_{i=1}^{n-1} \left[\frac{n^2 + n(t-1) - 2t}{t} (h_{ii}^\alpha)^2 + \frac{2(n+t)}{n} (h_{nn}^\alpha)^2 \right] + \frac{2(n+t)(n-1)}{t} \sum_{i=1}^{n-1} (h_{ij}^\alpha)^2 - 2 \sum_{i<j}^{n} h_{ii}^\alpha h_{jj}^\alpha + \frac{t}{n} (h_{nn}^\alpha)^2 \]
\[\geq \sum_{\alpha = n+1}^{m} \sum_{i=1}^{n-1} \left[\frac{n^2 + n(t-1) - 2t}{t} (h_{ii}^\alpha)^2 - 2 \sum_{i<j}^{n} h_{ii}^\alpha h_{jj}^\alpha + \frac{t}{n} (h_{nn}^\alpha)^2 \right] .\]

For \(\alpha = n+1, \ldots, m\), let us consider the quadratic form \(f_\alpha : \mathbb{R}^n \rightarrow \mathbb{R}\) defined by
\[f_\alpha(h_{11}^\alpha, \ldots, h_{nn}^\alpha) = \frac{n^2 + n(t-1) - 2t}{t} \sum_{i=1}^{n-1} (h_{ii}^\alpha)^2 - 2 \sum_{i<j}^{n} h_{ii}^\alpha h_{jj}^\alpha + \frac{t}{n} (h_{nn}^\alpha)^2 ,\]
and the constrained extremum problem
\[\min f_\alpha\]
subject to \(F^\alpha : h_{11}^\alpha + \cdots + h_{nn}^\alpha = c^\alpha\),
where \(c^\alpha\) is a real constant. Comparing (3.5) with the quadratic function in Lemma 2.1, we see that
\[a = \frac{n^2 + n(t-1) - 2t}{t}, \quad b = \frac{t}{n} .\]

Therefore, we have the critical point \((h_{11}^\alpha, \ldots, h_{nn}^\alpha)\), given by
\[h_{11}^\alpha = h_{22}^\alpha = \cdots = h_{n-1}^\alpha = \frac{tc^\alpha}{(n+t)(n-1)}, \quad h_{nn}^\alpha = \frac{nc^\alpha}{n+t} .\]
is a global minimum point by Lemma 2. Moreover, \(f_\alpha (h_{a_1}^{\alpha}, \cdots, h_{a_n}^{\alpha}) = 0 \). Therefore, we have

\[
\text{(3.6)} \quad \mathcal{P} \geq 0,
\]

which implies

\[
2 \tau(p) \leq t \mathcal{C} + \frac{(n-1)(n+t)(n^2-n-t)}{nt} \mathcal{C}(L) + (2n-2) \sum_{i=1}^{n} L(e_i, e_i) + 6 \sum_{i,j=1}^{n} L(e_i, Je_j) \tilde{g}(e_i, Je_j)\]

\[
= t \mathcal{C} + \frac{(n-1)(n+t)(n^2-n-t)}{nt} \mathcal{C}(L)
\]

\[
+ \frac{(2n-2)(3n+4)-6||P||^2}{2(2n+2)(2n+4)} \tau - \frac{6}{2n+4} \sum_{i,j=1}^{n} \text{Ric}(e_i, Je_j) \tilde{g}(e_i, Je_j),
\]

where \(||P||^2 = \sum_{i,j=1}^{n} g^2(Je_i, e_j) \) for \(JX = PX + QX, X \in \Gamma(TM) \) whose \(PX \) and \(QX \) are the tangential and normal components of \(JX \), respectively.

From (2.3), we derive

\[
\frac{5n^2+23n+20+3||P||^2}{4(n+1)(n+2)} \tau \leq t \mathcal{C} + \frac{(n-1)(n+t)(n^2-n-t)}{nt} \mathcal{C}(L)
\]

\[- \frac{3}{n+2} \sum_{i,j=1}^{n} \text{Ric}(e_i, Je_j) \tilde{g}(e_i, Je_j).
\]

Therefore, we derive

\[
\rho \leq \frac{8(n+1)(n+2)}{n(n-1)(5n^2+23n+20+3||P||^2)} \left(t \mathcal{C} + \frac{(n-1)(n+t)(n^2-n-t)}{nt} \mathcal{C}(L) \right)
\]

\[- \frac{6(n+1)}{n(n-1)(5n^2+23n+20+3||P||^2)} \sum_{i,j=1}^{n} \text{Ric}(e_i, Je_j) \tilde{g}(e_i, Je_j).
\]

Therefore, we have the following theorem:

Theorem 3.1. Let \(M^n \) be an \(n \)-dimensional Riemannian submanifold of a Bochner-Kähler manifold \((\bar{M}, \bar{\mathcal{g}}, J)\). When \(0 < t < n^2 - n \), the generalized normalized \(\delta \)-Casorati curvature \(\delta_{\mathcal{C}}(t, n-1) \) on \(M^n \) satisfies

\[
\rho \leq \frac{8(n+1)(n+2)}{n(n-1)(5n^2+23n+20+3||P||^2)} \delta_{\mathcal{C}}(t, n-1)
\]

\[- \frac{6(n+1)}{n(n-1)(5n^2+23n+20+3||P||^2)} \sum_{i,j=1}^{n} \text{Ric}(e_i, Je_j) \tilde{g}(e_i, Je_j).
\]

Moreover, the equality case holds if and only if \(M^n \) is an invariantly quasi-umbilical submanifold with trivial normal connection in a Bochner-Kähler manifold \((\bar{M}, \bar{\mathcal{g}}, J)\).
such that with respect to suitable orthonormal tangent frame \(\{\xi_1, \cdots, \xi_n\}\) and normal orthonormal frame \(\{\xi_{n+1}, \cdots, \xi_m\}\), the shape operators \(A_r \equiv A_{\xi_r}, r \in \{n+1, \cdots, m\}\), take the following forms:

\[
A_{n+1} = \begin{pmatrix}
 a & 0 & 0 & \cdots & 0 & 0 \\
 0 & a & 0 & \cdots & 0 & 0 \\
 0 & 0 & a & \cdots & 0 & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & 0 & 0 & \cdots & a & 0 \\
 0 & 0 & 0 & \cdots & 0 & n(n-1) \alpha
\end{pmatrix}, \quad A_{n+2} = \cdots = A_m = 0.
\]

Corollary 3.2. Let \(M^n\) be an \(n\)-dimensional Einstein submanifold of a Bochner-Kähler manifold \((M^m, \tilde{g}, J)\). Then, for a Ricci curvature \(\lambda\), we obtain

\[
\rho \leq \frac{8(n+1)(n+2)}{n(n-1)(5n^2 + 23n + 20 + 3||P||^2)} \delta_C(t, n-1)
- \frac{6(n+1)||P||^2}{n(n-1)(5n^2 + 23n + 20 + 3||P||^2)} \lambda.
\]

Moreover, the equality case holds if and only if with respect to a suitable frames \(\{e_1, \cdots, e_n\}\) on \(M\) and \(\{e_{n+1}, \cdots, e_m\}\) on \(T_p^1 M, p \in M\), the components of \(h\) satisfy

\[
h_{11}^\alpha = h_{22}^\alpha = \cdots = h_{n-1,n-1}^\alpha = \frac{n}{(n-1)} h_{nn}^\alpha, \quad \alpha \in \{n+1, \cdots, m\},
\]

\[
h_{ij}^\alpha = 0, \quad i, j \in \{1, 2, \cdots, n\}(i \neq j), \quad \alpha \in \{n+1, \cdots, m\}.
\]

For a slant submanifold of a Bochner-Kähler manifold, we have following corollaries.

Corollary 3.3. Let \(M^n\) be an \(n\)-dimensional slant submanifold of a Bochner-Kähler manifold \((M^m, \tilde{g}, J)\). When \(0 < t < n^2 - n\), we obtain

\[
\rho \leq \frac{8(n+1)(n+2)}{n(n-1)(5n^2 + 23n + 20 + 3\cos^2 \theta)} \delta_C(t, n-1)
- \frac{6(n+1)}{n(n-1)(5n^2 + 23n + 20 + 3\cos^2 \theta)} \sum_{i,j=1}^{n} \text{Ric}(e_i, Je_j) \cos^2 \theta,
\]

where \(\theta\) is a slant function. Moreover, the equality case holds if and only if with respect to a suitable frames \(\{e_1, \cdots, e_n\}\) on \(M\) and \(\{e_{n+1}, \cdots, e_m\}\) on \(T_p^1 M, p \in M\), the components of \(h\) satisfy

\[
h_{11}^\alpha = h_{22}^\alpha = \cdots = h_{n-1,n-1}^\alpha = \frac{t}{(n-1)} h_{nn}^\alpha, \quad \alpha \in \{n+1, \cdots, m\},
\]

\[
h_{ij}^\alpha = 0, \quad i, j \in \{1, 2, \cdots, n\}(i \neq j), \quad \alpha \in \{n+1, \cdots, m\}.
\]

Corollary 3.4. Let \(M^n\) be an \(n\)-dimensional invariant submanifold of a Bochner-Kähler manifold \((M^m, \tilde{g}, J)\). When \(0 < t < n^2 - n\), we obtain

\[
\rho \leq \frac{8(n+1)(n+2)}{n(n-1)(5n^2 + 23n + 23)} \delta_C(t, n-1)
- \frac{6(n+1)}{n(n-1)(5n^2 + 23n + 23)} \sum_{i,j=1}^{n} \text{Ric}(e_i, Je_j),
\]
Moreover, the equality case holds if and only if with respect to a suitable frames \(\{e_1, \ldots, e_n\} \) on \(M \) and \(\{e_{n+1}, \ldots, e_m\} \) on \(T^\perp_p M, p \in M \), the components of \(h \) satisfy
\[
 h_{11}^\alpha = h_{22}^\alpha = \cdots = h_{n-1,n-1}^\alpha = \frac{\ell}{n(n-1)} h_{nn}^\alpha, \quad \alpha \in \{n + 1, \cdots, m\}, \\
 h_{ij}^\alpha = 0, \quad i, j \in \{1, 2, \cdots, n\} (i \neq j), \quad \alpha \in \{n + 1, \cdots, m\}.
\]

Corollary 3.5. Let \(M^n \) be an \(n \)-dimensional anti-invariant submanifold of a Bochner-Kähler manifold \((\bar{M}^m, \bar{\gamma}, J)\). When \(0 < t < n^2 - n \), we obtain
\[
 \rho \leq \frac{8(n + 1)(n + 2)}{n(n - 1)(5n^2 + 23n + 20)} \delta_C(t, n - 1),
\]

Moreover, the equality case holds if and only if \(M \) is an invariantly quasi-umbilical submanifold of Bochner-Kähler manifold.

Remark 3.1. In the case for \(t > n^2 - n \), the methods of finding the above inequalities is analogous. Thus, we leave the problems for readers.

Acknowledgements. Chul Woo Lee was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (2018R1D1A1B07040576), and Jae Won Lee was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (2017R1D1A1B03033978).

References

Authors’ addresses:

Chul Woo Lee
Department of Mathematics,
Kyungpook National University, Daegu 41566, South Korea.
E-mail: mathisu@knu.ac.kr

Jae Won Lee (Corresponding author)
Department of Mathematics Education RINS,
Gyeongsang National University, Jinju 52828, South Korea.
E-mail: leejaew@gnu.ac.kr