On the Brill-Noether theory of curves in a weighted projective plane

E. Ballico

Abstract. We study the gonality and the existence of low degree pencils on curves with a model on a weighted projective plane, when their singularities are only ordinary nodes or ordinary cusps and they are general in the weighted projective plane.

Key words: weighted projective plane; gonality; ordinary singularity.

1 Introduction

In this paper we consider the first steps of the Brill-Noether theory of curves on a weighted projective plane ([7], [8], [1]) (a very classical topic, but as far as we know the results of this note are new). See [2], [3], [4], [5], [6], [9] for smooth and singular plane curves.

Fix positive integers a, b, c and let $\mathbb{P} := \mathbb{P}(a, b, c)$ denote the weighted projective space with weights a, b, c. Up to isomorphisms of the ambient weighted projective plane we may assume that any 2 of the integer a, b, c are coprimes ([1, Proposition 3C.5], [7, Proposition 1.3]). We may assume $a \leq b \leq c$. Since $(a, b) = (b, c) = (a, b) = 1$, we are in one of the following cases:

1. $a = b = c = 1$;
2. $a = b = 1$, $c > 1$;
3. $a < b < c$, $(a, b) = 1$, $(a, c) = 1$, $(b, c) = 1$.

In the first case we have $\mathbb{P} \cong \mathbb{P}^2$. In the second case \mathbb{P} is embedded as a cone over a rational normal curve of \mathbb{P}^c and the blowing up of the vertex of the cone gives the Hirzebruch surface F_c ([1, page 124], [8, 1.2.3]). In this case it seems easier to work directly on F_c (the case $b = 1$ of Theorem 1.2 is true by [10]). Hence from now on we assume $a < b < c$ and $(a, b) = (a, c) = (b, c) = 1$.

We fix variables x_1, x_2, x_3 and give weight a to x_1, b to x_2 and c to x_3. For all integers $t \geq 0$ let $K[x_1, x_2, x_3]_{a, b, c, t}$ be the linear subspace of $K[x_1, x_2, x_3]$ generated...
by the monomials \(x_1^{a_1}x_2^{a_2}x_3^{a_3} \) with \(a_i \geq 0 \) for all \(i \) and \(aa_1 + ba_2 + ca_3 = t \), i.e. the monomials with weight \(t \). We recall that \(\mathbb{P} \) has only quotient singularities (if \(a = 1 < b \), \(\text{Sing}(\mathbb{P}) = \{(0 : 1 : 0), (0 : 0 : 1)\} \), if \(a > 1 \), then \(\text{Sing}(\mathbb{P}) = \{(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1)\} \), that the set of all rational equivalence classes of Weil divisors is a free abelian group of rank 1 ([1, Corollary 5.8]), that \(\mathcal{O}_\mathbb{P}(t) \), \(t \in \mathbb{Z} \), is the set of all rank one reflexive sheaves on \(\mathbb{P} \), that \(h^1(\mathcal{O}_\mathbb{P}(t)) = 0 \) for all \(t \in \mathbb{Z} \), \(h^0(\mathcal{O}_\mathbb{P}(t)) = K[x_1, x_2, x_3]_{a,b,c,t} \) for all \(t \geq 0 \), that \(\mathcal{O}_\mathbb{P}(t) \) is locally free if and only if \(t \equiv 0 \mod abc \). The line bundle \(\mathcal{O}_\mathbb{P}(abc) \) is very ample ([1, Remark 3]). Hence for all \(t > 0 \) a general element of \(|\mathcal{O}_\mathbb{P}(abc)| \) is a smooth and connected curve. Fix a positive integer \(d \) and take \(C \in |\mathcal{O}_\mathbb{P}(dbc)| \) such that \(C \) is smooth. Since \(C \) is a Cartier divisor of \(\mathbb{P} \) and \(C \) is smooth, we have \(C \cap \text{Sing}(\mathbb{P}) = \emptyset \). Hence each \(\mathcal{O}_C(t) \), \(t \in \mathbb{Z} \), is a line bundle. We have \(\mathcal{O}_\mathbb{P}(1) \cdot \mathcal{O}_\mathbb{P}(1) = \frac{1}{abcd} \) in the rational Chow ring of \(\mathbb{P} \) (use [11, Corollary A.2] or that the covering map \(\mathbb{P}^2 \to \mathbb{P} \) is the quotient by the group \(\mu_a \times \mu_b \times \mu_c \) and hence it has degree \(abc \)). Since \(\omega_{\mathbb{P}} \cong \mathcal{O}_\mathbb{P}(-a - b - c) \) ([1, Corollary 6B.8], [7, Theorem 5.2], [8, 3.3.4 and 3.5.2]), the adjunction formula gives \(\omega_C \cong \mathcal{O}_C(dabc - a - b - c) \) ([1, Corollary 6B.9], [8, 3.5.2]) Hence \(C \) has genus \(1 + d(dabc - a - b - c)/2 \). Since \(h^1(\mathcal{O}_\mathbb{P}(t)) = 0 \) for all \(t \), for each integer \(w \geq 0 \) the restriction map \(\rho_w : H^0(\mathcal{O}_\mathbb{P}(w)) \to H^0(\mathcal{O}_C(w)) \) is surjective. Hence \(h^0(\mathcal{O}_C(t)) = \dim(K[x_1, x_2, x_3]_{a,b,c,t}) \) for all \(t < dabc \). In particular we have \(h^0(\mathcal{O}_C(ab)) = 2 \). Hence \(C \) has gonality at most \(\text{deg}(\mathcal{O}_C(ab)) = dab \) (use again that \(\mathcal{O}_\mathbb{P}(1) = \frac{1}{abcd} \)). The line bundle \(\mathcal{O}_C(ab) \) is spanned, because \((0 : 0 : 1) \) is the only base point of \(|\mathcal{O}_\mathbb{P}(1)| \) and \((0 : 0 : 1) \notin C \).

Our first result is non-trivial only if \(c \gg ab \).

Theorem 1.1. Let \(C \in |\mathcal{O}_\mathbb{P}(dbc)| \) be a smooth curve. Assume \(dab - a - b - c > 0 \) and \((a,b,d) \neq (1,2,1) \). Let \(w : C \to \mathbb{P}^1 \) be the morphism induced by \(|\mathcal{O}_C(ab)| \). Let \(z \) be any positive integer such that \((z - 2)ab < dab - a - b - c \). Then there is no degree \(z \) morphism \(u : C \to \mathbb{P}^1 \) such that \(u \) is not partially composed with \(w \), i.e. such that the morphism \((w, u) : C \to \mathbb{P}^1 \times \mathbb{P}^1 \) is birational onto its image.

The condition “ \(dab - a - b - c > 0 \)” is equivalent to assuming that \(C \) has genus \(\geq 2 \). The result is sharp, in the sense that it fails (just by 1) in the omitted case \((a,b,d) = (1,2,1) \) (see Remark 2.1).

In the case \(a = 1 \), we prove the following result.

Theorem 1.2. Assume \(a = 1 < b \). Let \(C \in |\mathcal{O}_\mathbb{P}(dac)| \) be a smooth curve. Then \(C \) has gonality \(db \) and \(\mathcal{O}_C(b) \) is the unique line bundle \(L \) on \(C \) such that \(h^0(L) \geq 2 \) and \(\text{deg}(L) \leq db \).

In section 3 we consider the case of singular curves. We consider both the spanned line bundles of minimal degree on the singular curve and the case of the normalization of an integral curve.

2 Proof of Theorems 1.1 and 1.2

Remark 2.1. Let \(C \in |\mathcal{O}_\mathbb{P}(dbc)| \) be a smooth curve of genus \(g \geq 2 \). Assume \((a,b,c) = (1,2,1) \) (the case excluded in the statement of Theorem 1.1). Since \(b = 2 \) and \((b,c) = 1, c \) is odd. We have \(g = 1 + (c - 3)/2 \). The spanned line bundle \(\mathcal{O}_C(2) \) has degree 2 and hence \(C \) is hyperelliptic. There is a degree \(z \) spanned line bundle
whose associated morphism is not composed with the hyperelliptic involution if and only if \(z \geq g + 1 = 2 + (c - 3)/2 \).

Proof of Theorem 1.1: Assume the existence of such a morphism and take \(z \) minimal for which it exists. Set \(R := u^*(O_{P^3}(1)) \). \(R \) is a spanned line bundle of degree \(z \) and in particular \(h^0(R) \geq 2 \). Let \(g = 1 + d(dabc - a - b - c)/2 \) be the genus of \(C \).

First assume \(z > g \), i.e. \(z - 2 \geq g - 1 \). We get \(d(dabc - a - b - c)/2 \leq dabc - a - b - c \). Since \(dabc - a - b - c > 0 \), we get \(d = 1 \) and \(ab = 2 \), i.e. \(d = 1, a = 1, b = 2 \). We excluded this case in the proof of Theorem 1.1.

Now assume \(z \leq g \) and hence \(h^1(R) > 0 \). Fix a general fiber of \(u \). Since \(h^1(R) > 0 \) and \(\omega_C \cong O_C(dabc - a - b - c) \), we have \(h^1(I_Z(dabc - a - b - c)) > 0 \). Assume for the moment that \(Z \) is reduced (this is always the case in characteristic zero). Fix an ordering \(P_1, \ldots, P_2 \) of the points of the support of \(Z \). Since \(R \) is spanned and \(h^1(R) > 0 \), we have \(h^1(O_C(Z')) = h^1(O_C(Z)) \) for each \(Z' \subset Z \) with \(\text{deg}(Z') = z - 1 \).

To get \(Z' \) we have \(\dim(I_Z(dabc - a - b - c)) = 1 + dabc - a - b - c \) by \(\text{dim}(\text{Sing}(P)) \). Fix a general \(P \) and \(dabc - a - b - c > 0 \), we get \(d = 1 \) and \(ab = 2 \), i.e. \(d = 1, a = 1, b = 2 \). We excluded this case in the proof of Theorem 1.1.

Now assume \(Z \) is not reduced, i.e. that \(u \) is not separable. We get that the base field has characteristic \(p > 0 \). Since the base field is algebraically closed, we also get that it is composed with a Frobenius of \(\mathbb{P}^3 \), contradicting the minimality of \(z \). \(\square \)

Proof of Theorem 1.2: We have \(\text{Sing}(P) = \{(0 : 1 : 0), (0 : 0 : 1)\} \). Since \(C \in |O_{\mathbb{P}^3}(dabc)| \), it is a Cartier divisor of \(\mathbb{P}^3 \). Since \(C \) is smooth, then \((0 : 0 : 1) \notin C \).

Hence \(O_C(b) \) is a spanned line bundle of degree \(db \). Since \(h^1(O_{\mathbb{P}^3}(b - dabc)) = 0 \), we have \(h^0(O_C(b)) = 2 \). Take a line bundle \(L \) with minimal degree \(z \leq db \) with \(h^0(L) \geq 2 \) and assume \(L \notin O_C(b) \). Fix a general \(Z \in |L| \). As in last part of the proof of Theorem 1.1 we reduce to the case in which \(Z \) is reduced. Since \(L \) is spanned, we may assume \(Z \cap \{ z_0 = 0 \} = \emptyset \). We fix an ordering \(P_1, \ldots, P_2 \) of the points of \(Z \) and set \(Z' := \{P_1, \ldots, P_{n-1}\} \).

As in the proof of Theorem 1.1 to get a contradiction it is sufficient to prove that \(h^1(I_{Z'}(dabc - a - b - c)) = 0 \).

Since \(z \leq db \), we have \((z - 2)c \leq (db - 2)c \leq dabc - 1 - b - c \) and so it is sufficient to find \(D_i \in |O_{\mathbb{P}^3}(c)| \), \(1 \leq i \leq z - 2 \), such that \(P_i \notin D_i \) and \(P_{i+1} \notin D_i \). Fix \(i \in \{1, \ldots, z - 2\} \). If there is \(T \in |O_{\mathbb{P}^3}(b)| \) with \(P_i \in T \) and \(P_{i+1} \notin T \), say \(T \) with equation \(u(z_0, z_1) \in K[z_0, z_1, z_2] \), then we take as \(D_i \), the divisor with \(z_0^{e} - u(z_0, z_1) \) as its equations. Now assume that \(D_{i+1} \) is contained in every element of \(|I_{P_i}(b)| \) and fix \(T \in |I_{P_i}(b)| \). Since \(P_i \notin \{(0 : 1 : 0), (0 : 0 : 1)\}, T \) is the only element of \(|O_{\mathbb{P}^3}(b)| \) containing \(P_i \). Let \(M \) be a general element of \(|I_{P_i}(c)| \). Set \(e := [c/b] \).

We have \(\dim(K[x_0, x_1, x_2]_{1,b,c,c+e-b}) = e \) and \(\dim(K[x_0, x_1, x_2]_{1,b,c,c+e}) = e + 2 \) and so \(h^0(O_{\mathbb{P}^3}(c - b)) \leq h^0(O_{\mathbb{P}^3}(c - 2)) \). Hence \(T \) is not a component of \(M \). We have \(P_i \notin T \cap M \).

Since \(O_{\mathbb{P}^3}(b) \cdot O_{\mathbb{P}^3}(c) = 1 \), \(P_i \) is a smooth point of \(P \) and \(P_i \in T \cap M \), \(P_i \) is the only element of \(P \setminus \text{Sing}(P) \) contained in \(M \cap T \). Hence \(P_{i+1} \notin M \). Take \(D_i := M \). \(\square \)

To check the key assumption of Theorem 1.1 the following well-known result may be useful.
Lemma 2.1. Take a smooth and connected curve $C \subset \mathbb{P}$ such that $(0 : 0 : 1) \notin C$ and assume the existence of $D \in |\mathcal{O}_P(ab)|$, $D \neq C$, such that the scheme $C \cap D$ has 1 connected component with multiplicity 2 and deg(w) = 2 connected components with multiplicity 1. Let $w: C \rightarrow \mathbb{P}^1$ be the morphism induced by $|\mathcal{O}_C(ab)|$. Then w is not composed with an involution, i.e. there are no triple (X, w_1, w_2) with X a connected smooth curve, $w_1: C \rightarrow X$, $w_2: X \rightarrow \mathbb{P}^1$, $w = w_2 \circ w_1$, deg(w_1) ≥ 2 and deg(w_2) ≥ 2.

Proof. If $ab = 2$ (i.e. if $(a, b) = (1, 2)$), then w is not composed. In the general case we use that the monodromy group of w is the full symmetric group (see [12, Proposition 2.1] for a characteristic free proof, but remember that the monodromy group is 1-transitive just because C is an integral curve).

3 Singular curves

We only look at integral curves T, which are contained in the smooth locus of \mathbb{P} and hence that are Cartier divisors of \mathbb{P}. Let T be any such curve. There are many different Brill-Noether theories for integral singular curves. If we only look at spanned line bundles, then the proofs of Theorems 1.1 and 1.2 only require minimal modifications.

Theorem 3.1. Let $C \in |\mathcal{O}_P(dabc)|$ be an integral curve. Assume $dabc - a - b - c > 0$, i.e. assume that C has arithmetic genus ≥ 2, and $(a, b, d) \neq (1, 2, 1)$. Let $w: C \rightarrow \mathbb{P}^1$ be the morphism induced by $|\mathcal{O}_C(ab)|$. Fix a positive integer z such that $(z - 2)ab \leq dabc - a - b - c$ and there is a degree z spanned line bundle R on C. Let $u: C \rightarrow \mathbb{P}^y$, $y := h^0(R) - 1$, be the morphism induced by $H^0(R)$. In positive characteristic assume that either u is separable or that the algebraic group $\text{Pic}^0(C)$ has no unipotent part. Then the morphism $(w, u): C \rightarrow \mathbb{P}^y \times \mathbb{P}^1$ is not birational onto its image.

Theorem 3.2. Assume $a = 1 < b$. Let $C \in |\mathcal{O}_P(dac)|$ be a integral curve such that $C \cap \text{Sing}(\mathbb{P}) = \emptyset$. In positive characteristic assume that either u is separable or that the algebraic group $\text{Pic}^0(C)$ has no unipotent part. Then $\mathcal{O}_C(b)$ is the unique line bundle R on C such that $h^0(R) \geq 2$, R is spanned and $\text{deg}(R) \leq db$.

Proofs of Theorems 3.1 and 3.2: Take any spanned line bundle R on C with $h^0(R) \geq 2$ and call Z the zero-locus of a general section of R. Set $z := \text{deg}(Z)$. Since R is spanned, we have $Z \cap \text{Sing}(C) = \emptyset$. In characteristic zero Z is reduced and we may continue the proofs of Theorems 1.1 and 1.2. Now assume $p := \text{char}(K) > 0$ and that Z is not reduced. Set $B := Z_{\text{red}}$. Let $u: C \rightarrow \mathbb{P}^y$, $y := h^0(R) - 1$, be the morphism induced by $H^0(R)$. Since Z is general, it is not reduced if and only if u is not separable and, if $p^e > 0$, is the inseparable degree of u, then each connected component of Z has degree p^e and $Z = p^eB$ (this equality is non-ambiguous, because $B \subset C_{\text{reg}}$). Varying Z in $|L|$ we get infinitely many effective divisors B which, multiplied by p^e, are linearly equivalent. By assumption the p^e-torsion of $\text{Pic}^0(C)$ is finite. Hence C has a line bundle A of degree z/p^e with $h^0(A) \geq 2$, a contradiction. □

Let $Y \subset \mathbb{P}$ be an integral curve with $Y \cap \text{Sing}(\mathbb{P}) = \emptyset$ and only ordinary nodes and ordinary cusps as its singularities. Set $S := \text{Sing}(Y)$ and $s := \sharp(S)$. Since $Y \cap \text{Sing}(\mathbb{P}) = \emptyset$, Y is a Cartier divisor of \mathbb{P} and hence there is an integer $d > 0$ such that $Y \in |\mathcal{O}_P(dabc)|$. The adjunction formula, gives $\omega_Y \cong \mathcal{O}_Y(dabc - a - b - c)$. Since
Assume M. Coppens, S. Greco, G. Raciti, M. Beltrametti, L. Robbiano, C. Delorme, H. T.

Proofs of Theorems 3.3 and 3.4:

Theorem 3.3. Assume $(z - 2)ab \leq dab - a - b - c$, $s + z \leq 2 + d(dabc - a - b - c)/2$ and that $S \subset \mathbb{P}$ is a general subset with cardinality s. Then there is no degree z morphism $u: C \to \mathbb{P}^1$ such that the morphism $(w, u): C \to \mathbb{P}^1 \times \mathbb{P}^1$ is birational onto its image.

Theorem 3.4. Assume $a = 1 < b$, $s + db \leq 2 + d(dabc - a - b - c)/2$ and that S is general in \mathbb{P}. Then $\mathcal{O}_C(b)$ is the only line bundle L on C with $\deg(L) \leq db$ and $h^0(L) \geq 2$.

Acknowledgements. The author was partially supported by MIUR and GN-SAGA of INdAM (Italy).

References

Author’s address:

Edoardo Ballico
Dept of Mathematics, University of Trento,
via Sommarive 14, Trento (TN), 38123, Italy.
E-mail: ballico@science.unitn.it