On subprojective transformations

Iulia Elena Hirică

Dedicated to the memory of Radu Rosca (1908-2005)

Abstract. The aim of this paper is to study subgeodesically related spaces. Using some results of Levi-Civita and Vrâncanu an example of projectively equivalent Riemann metrics is given. ξ-subcharacteristic vector fields are studied for some deformation algebras and it is also illustrated the relation with the concept of ξ-subgeodesically related connexions.

Mathematics Subject Classification: 53B05, 53B20, 53B21.

Key words: subprojective transformations, ξ-subcharacteristic vector fields, Weyl structures, deformation algebras.

1 Introduction

Let M be a connected paracompact, smooth manifold of dimension $n \geq 3$. Let $\mathcal{X}(M)$ be the Lie algebra of vector fields on M, $T^{(p,q)}(M)$ the $C^\infty(M)$-module of tensor fields of type (p,q) on M, $\Lambda^p(M)$ the $C^\infty(M)$-module of p-forms on M and $\Delta^p(M)$ the p-th de Rham cohomology group of M.

Let Γ^i_{jk} be the components of an affine symmetric connection ∇ and ξ^i be the components of a vector field ξ. One can associate the differential system of equations

$$
\frac{d^2 x^i}{dt^2} + \Gamma^i_{jk} \frac{dx^j}{dt} \frac{dx^k}{dt} = a \frac{dx^i}{dt} + b \xi^i,
$$

a and b being functions of t, which defines the ξ-subgeodesics.

K. Yano introduced the subprojective transformations of connections, which preserve the ξ-subgeodesics

$$
\Gamma^i_{jk} = \Gamma^i_{jk} + \delta^i_j \omega_k + \delta^i_k \omega_j + \theta_{jk} \xi^i,
$$

where ω and θ_{jk} are the components of a 1-form and of a symmetric tensor field of type $(0,2)$, respectively.

Two Riemannian spaces (M,g) and (M,\mathcal{g}) are ξ-subgeodesically related, the tensor of correspondence θ_{jk}, being $-g_{jk}$, if the Levi-Civita connections associated to g and \mathcal{g} satisfy the Yano formulae (1.2). Therefore there exists a diffeomorphism f between these two spaces which maps ξ-subgeodesics onto ξ-subgeodesics. f is called the subgeodesic mapping.
If \(\xi^i = 0 \), then the Yano formulae become the Weyl formulae and spaces are geodesically related.

In the present paper subgeodesically and geodesically spaces are considered. The Levi-Civita and Vrăanceanu canonical forms are given for certain projectively equivalent metrics on some Weyl manifolds.

It is also illustrated the close ties that exist between the \(\xi \)-subcharacteristic vector fields and \(\xi \)-subgeodesically related connections.

2 On \(\xi \)-subcharacteristic vector fields

Let \(A \) be a \((1, 2)\)-tensor field on \(M \). The \(\mathcal{C}^\infty(M) \)-algebra if we consider the multiplication rule given by
\[
X \circ Y = A(X, Y), \forall X, Y \in \mathcal{X}(M).
\]
This algebra is denoted by \(\mathcal{U}(M, A) \) and it is called the algebra associated to \(A \). If \(\nabla \) and \(\nabla' \) are two linear connections on \(M \) and \(A = \nabla' - \nabla \), then \(\mathcal{U}(M, A) \) is called the deformation algebra defined by the pair \((\nabla, \nabla') \).

A vector field \(X \in \mathcal{X}(M) \) is called \(\xi \)-subcharacteristic in the deformation algebra \(\mathcal{U}(M, A) \) if there exists two functions \(\lambda, \mu \in \mathcal{C}^\infty(M) \) such that
\[
(2.1) \quad A(X, X) = \lambda X + \mu \xi.
\]

Remark 2.1
1) If \(X \) is a nonvanishing \(\xi \)-subcharacteristic vector field i.e. is a vector field of \(\xi \)-subcharacteristic direction, then (2.1) is equivalent to
\[
A(X, X) \otimes X - X \otimes A(X, X) = \mu(\xi \otimes X - X \otimes \xi).
\]
2) The trajectories of vector fields of \(\xi \)-subcharacteristic directions, called the \(\xi \)-subcharacteristic curves, satisfy the following differential system of equations
\[
(2.2) \quad B_{i j k p q r s}^{l m n o} \frac{dx^k}{dt} \frac{dx^s}{dt} \frac{dx^r}{dt} \frac{dx^h}{dt} = 0,
\]
where
\[
B_{i j k p q r s}^{l m n o} = (A_{i k}^p \delta_j^q - A_{j k}^i \delta_i^p)(\delta_{k r}^s \xi^p - \delta_{r k}^s \xi^p) - (A_{k p}^i \delta_l^q - A_{q p}^k \delta_i^l)(\delta_{k s}^r \xi^j - \delta_{s k}^r \xi^j).
\]

The geometric interpretation of vector fields of \(\xi \)-subcharacteristic direction is given by the following result

Proposition A[8] Let \(\nabla \) and \(\nabla' \) be two symmetric linear connections on \(M \) and \(\xi \in \mathcal{X}(M) \). Let \(X \in \mathcal{X}(M), X_p \neq 0, \forall p \in M \) such that \(X \) and \(\xi \) are either independent \(\forall p \in M \) or dependent \(\forall p \in M \). The following assertions are equivalent:
1) \(X \) is a vector field of \(\xi \)-subcharacteristic direction in the deformation algebra \(\mathcal{U}(M, \nabla' - \nabla) \).
2) Let any \(p \in M \). If \(c \) is a \((\xi, \nabla')\)-subgeodesic verifying
\[
c(t_0) = p, \quad \frac{dc}{dt} \bigg|_{t_0} = aX_p, a \in \mathbb{R}^*,
\]
then the point \(p \) is \((\xi, \nabla')\)-subgeodesic i.e. \(\xi_p \) belongs to the osculating plane of the curve \(c \) at \(p \).
The following result illustrates the relation between the ξ-subcharacteristic vector fields and the ξ-subgeodesically related connections:

Proposition B [8] Let ∇ and ∇' be two symmetric linear connections on M and $\xi \in \mathcal{X}(M)$. The following assertions are equivalent:

1) All the elements of the algebra $\mathcal{U}(M, \nabla' - \nabla)$ are ξ-subcharacteristic vector fields.

2) In every point $p \in M$ there exists a curve ξ-subcharacteristic tangent to a given direction.

3) There exists a symmetric $(0,2)$-tensor field θ and a 1-form ω on M such that

$$\nabla' X Y - \nabla X Y = \omega(X)Y + \omega(Y)X + \theta(X,Y)\xi, \forall X,Y \in \mathcal{X}(M).$$

4) ∇' and ∇ have the same ξ-subgeodesics.

3 On geodesically and subgeodesically related Riemann spaces

Let g be a Riemannian metric on M. A Weyl manifold is a triple (M, \hat{g}, W), where $\hat{g} = \{e^u g \mid u \in C^\infty(M)\}$ is the conformal class defined by g and $W : \hat{g} \rightarrow \Lambda^1(M)$ is a Weyl structure on the conformal manifold (M, \hat{g}), hence

$$W(e^u g) = W(g) - du, \forall u \in C^\infty(M).$$

A linear connection ∇ on M is compatible with the Weyl structure W if

$$\nabla g + W(g) \otimes g = 0.$$ (3.2)

There exists a unique torsion free linear connection ∇^W, verifying (3.2), given by the formula:

$$2g(\nabla X Y, Z) = X(g(Y,Z)) + Y(g(X,Z)) - Z(g(X,Y)) +$$ $$(3.3) + W(g)(X)g(Y,Z) + W(g)(Y)g(X,Z) - W(g)(Z)g(X,Y) +$$ $+ g([X,Y],Z) + g([Z,X],Y) - g([Z,Y],X), \forall X,Y,Z \in \mathcal{X}(M).$$

∇^W is called the Weyl conformal connection. This connection is invariant under a "gauge transformation" $g \rightarrow e^u g$. So, the 1-form $W(g)$ is required to change by (1.1).

Weyl introduced a 2-form $\psi(W)$ on M by setting $\psi(W) = dW(g)$, $g \in \hat{g}$, and called it the distance curvature. This is a gauge invariant. If $\psi(W) = 0$, then by (1.1), the cohomology class $[W(g)] \in H^1(M)$ of the closed form $W(g)$ does not depend on the choice of a metric in \hat{g}. For simplicity, we write $ch(W) = [W(g)]$.

The 2-form $\psi(W)$ and the class $ch(W)$ are the obstructions for a Weyl structure to be a Riemannian structure. Indeed:

Proposition C [2] Let (M, \hat{g}, W) be a Weyl manifold and ∇^W be the Weyl conformal connection. Then the following two conditions are equivalent:

1) $\psi(W) = 0$ and $ch(W) = 0;$
2) There is a Riemann metric in \(\hat{\mathcal{g}} \) such that \(\nabla^W g = 0 \).

Let \(\pi \) be a 1-form on \(M \). We denote by \(\nabla^L \) the connection compatible with the Weyl structure \(W \), which is \(\pi \)-semi-symmetric i.e.
the torsion tensor is required to be \(L (X, Y) = \pi(Y)X - \pi(X)Y, \forall X, Y \in \mathcal{X}(M) \) and

\[
2g(\nabla^Y X, Z) = X(g(Y, Z)) + Y(g(X, Z)) - Z(g(X, Y)) + W(g)(X, Y, Z) - \frac{1}{2} W(g)(X, Y, Z) - \frac{1}{2} g(X, Y) + g([X, Y], Z) + g([Z, X], Y) - g([Y, Z], X)
\]

holds. The relation between these two connections is given by

\[
\nabla^L X = \nabla^W X + \pi(X)X - g(X, Y)\pi^X,
\]

where \(g(Z, \pi^X) = \pi(Z), \forall Z \in \mathcal{X}(M) \).

We denote by \(\nabla^\ast \) the transposed connection of \(\nabla^L \) i.e.

\[
\nabla^\ast X = \nabla^W X + [X, Y].
\]

The relations (3.5) and (3.6) lead to

\[
\nabla^L X = \nabla^W X + \pi(X)X - g(X, Y)\pi^X.
\]

Let us denote by \(\nabla^\sigma \) the symmetric connection associated to \(\nabla^L \) i.e.

\[
\nabla^\sigma = \frac{1}{2}(\nabla^W + \nabla^L).
\]

Hence

\[
\nabla^\sigma X = \nabla^W X + \frac{1}{2} \pi(X)X + \frac{1}{2} g(X, Y)\pi^X.
\]

Let \((M, g) \) be a Riemannian manifold. Let \((M, \hat{\mathcal{g}}, W) \) be a Weyl manifold and \(\pi \in \wedge^1(M) \). Let \(\nabla^\sigma \) be the Levi-Civita connection associated to \(g \). From (3.3) one gets

\[
\nabla^\sigma X = \nabla^W X + \phi(X)Y + \phi(Y)X - g(X, Y)\phi^X
\]

where \(2\phi = W(g) \) and \(g(\phi^X, X) = \phi(X), \forall X \in \mathcal{X}(M) \). The relation (3.8) leads to

\[
\nabla^\sigma X = \nabla^W X + (\phi + \frac{1}{2}\pi)(X)Y + (\phi + \frac{1}{2}\pi)(Y)X - g(X, Y)(\pi + \phi)^X.
\]

Let us suppose that \(\nabla^\sigma \) is the Levi-Civita connection associated to another Riemannian metric \(\hat{\mathcal{g}} \) on \(M \). Let \(g_{ij}, \hat{g}_{ij}, \phi_i, \pi_i \) be the local components of \(g, \hat{g}, \phi \) and \(\pi \) respectively, in a local system of coordinates \((x^1, \ldots, x^n) \). We denote with \(\tilde{\Gamma}^{ik}_{jk} \) the Christoffel symbols of the metrics
The relation (3.10) becomes

\[ds^2 = g_{ij} dx^i dx^j, \]
\[d\tilde{s}^2 = \tilde{g}_{ij} dx^i dx^j. \]

The relation (3.10) becomes

\[(3.10)' \quad \begin{vmatrix} i \\
\end{vmatrix} jk = \begin{vmatrix} i \\
\end{vmatrix} jk + \delta_j^i (\varphi_k + \frac{1}{2} \pi_k) + \delta_k^i (\varphi_j + \frac{1}{2} \pi_j) - g_{jk} (\pi^i + \varphi^i), \]

where \(\pi^i = g^{ij} \pi_j, \varphi^i = g^{ij} \varphi_j. \) Considering \(i = j \) in (3.10)' and summing, one gets

\[(3.10)'' \quad n \varphi_k + \frac{n-1}{2} \pi_k = \begin{vmatrix} i \\
\end{vmatrix} ik - \begin{vmatrix} i \\
\end{vmatrix} ik = \frac{\partial}{\partial x^k} \left(\ln \left(\frac{\det (\tilde{g}_{ij})}{\det (g_{ij})} \right) \right). \]

Let us denote with \(\xi = (\pi + \varphi)^i \). The formula (3.10)' implies

\[(3.12) \quad \begin{vmatrix} i \\
\end{vmatrix} jk = \begin{vmatrix} i \\
\end{vmatrix} jk + \delta_j^i \omega_k + \delta_k^i \omega_j - g_{jk} \xi^i, \]

where \(\omega_i = \varphi_i + \frac{1}{2} \pi_i, \xi^i = \varphi^i + \pi^i. \) Therefore the metrics (3.11) are \(\xi^i \)-subgeodesically related. There exist differentiable mappings \(u \) and \(h \), with variables \((x^1, \ldots, x^n) \), such that \(\xi_i = \frac{\partial u}{\partial x^i} \) and \(\omega_i = \frac{\partial h}{\partial x^i} \).

We consider \(\tilde{g} = e^{2\nu} g. \) One has

\[(3.13) \quad \begin{vmatrix} i \\
\end{vmatrix} jk = \begin{vmatrix} i \\
\end{vmatrix} jk + \delta_j^i \xi_k + \delta_k^i \xi_j - g_{jk} \xi^i, \]

where \(\begin{vmatrix} i \\
\end{vmatrix} jk \) are the Christoffel symbols associated to \(\tilde{g}. \) Therefore one gets

\[(3.14) \quad \begin{vmatrix} i \\
\end{vmatrix} jk = \begin{vmatrix} i \\
\end{vmatrix} jk + \delta_j^i \sigma_k + \delta_k^i \sigma_j, \]

where \(\sigma_i = \omega_i - \xi_i. \) Hence the metrics

\[(3.15) \quad d\tilde{s}^2 = \tilde{g}_{ij} dx^i dx^j, \quad d\tilde{s}^2 = \tilde{g}_{ij} dx^i dx^j \]

are geodesically related. So, the metrics (3.15) can be reduced to the canonical forms of Levi-Civita and Vranceanu (according to the fact that the Riemann space \((M, \tilde{g}) \) is of cathegory \(n \) or cathegory \(m < n \)).

\[(3.16) \quad dV^2 = a_1 (x^1) f'(x^1)^2 + \ldots + a_n (x^n) f'(x^n)^2, \]
\[dL^2 = \frac{1}{x_1 \ldots x_n} \left(\frac{a_1 (x^1) f'(x^1)^2}{x_1^2} + \ldots + \frac{a_n (x^n) f'(x^n)^2}{x_n^2} \right), \]

where \(f(x) = (x - x^1) \ldots (x - x^n) \) or

\[(3.17) \quad dV^2 = a_1 (x^1) f'(x^1)^2 + F^2 c_{\lambda \mu} (x^{m+1}, \ldots, x^p) dx^\lambda dx^\mu + \]
\[+ F(k^2) c_{\alpha \beta} (x^{p+1}, \ldots, x^n) dx^\alpha dx^\beta, \]
\[dL^2 = \frac{1}{x_1 \ldots x_p} \left(\frac{a_1 (x^1) f'(x^1)^2}{x_1^2} + \frac{F^2}{c^2} c_{\lambda \mu} (x^{m+1}, \ldots, x^p) dx^\lambda dx^\mu + \right. \]
\[+ \left. F(k^2) c_{\alpha \beta} (x^{p+1}, \ldots, x^n) dx^\alpha dx^\beta \right), \]
where \(F(x) = (x - x^1) \cdot \ldots \cdot (x - x^m), 1 \leq i \leq m, m + 1 \leq \lambda, \mu \leq p, p + 1 \leq \alpha', \beta' \leq n \) and \(c^2 \) and \(k^2 \) are nonvanishing constants. Therefore the metrics (3.11) can be reduced to

\[
 ds^2 = e^{-2u(x^1, \ldots, x^n)} dV^2, \quad d\tilde{s}^2 = dL^2.
\]

Hence we obtain:

Theorem 3.1 Let \((M, g) \) be a Riemannian space and \(W \) a Weyl structure on the conformal manifold \((M, \tilde{g}) \). Let \(\pi \) be a 1-form on \(M, \tilde{\nabla} \) be the \(\pi \)-semi-symmetric conformal connection, \(\tilde{\nabla} \) be the symmetric connection associated to \(\tilde{\nabla} \). We suppose that \(\tilde{\nabla} \) is the Levi-Civita connection associated to another Riemannian metric \(\tilde{g} \) on \(M \). Then

i) The 1-forms \(W(g) \) and \(\pi \) are exact.

ii) The metrics (3.11) can be reduced to

\[
 ds^2 = e^{-2u(x^1, \ldots, x^n)} dV^2, \quad d\tilde{s} = dL^2,
\]

where \(dV^2 \) and \(dL^2 \) are the canonical forms of Levi-Civita and Vr˘ anceanu, given by (3.16) or (3.17), according to the case when the equation

\[
 \det(\tilde{g}_{ij} - r^2 g_{ij}) = 0
\]

has distinct roots or has \(m < n \) equal roots.

Remark 3.1. Let us consider the first formula (3.17) for \(c = k \). Multiplying all the variables \(x^1, \ldots, x^n \) with the same constant, we can suppose that \(c \) is the unit. Therefore the metric \(dV^2 \) can be written

\[
 (3.18) \quad dV^2 = a_i(x^i)F'(x^i)(dx^i)^2 + F(1)c_{\alpha\beta}dx^\alpha dx^\beta.
\]

One gets the next result, under the same hypothesis of the previous theorem:

Theorem 3.2. The metric \(ds^2 = g_{ij}dx^idx^j \) can be written

\[
 ds^2 = e^{-2u(x^1, \ldots, x^n)} dV^2, \quad dV^2 \text{ is given by the first formula of (3.16) or by the expression (3.18),}
\]

if the equation \(\det(\tilde{g}_{ij} - r^2 g_{ij}) = 0 \) has distinct roots or has \(m < n \) equal roots, respectively.

The last result underlines the connection between the concept of \(\xi \) - subcharacteristic vector fields and of those of deformation algebra on Weyl manifolds:

Theorem 3.3. Let \((M, g) \) be a Riemannian space and \(W \) a Weyl structure on the conformal manifold \((M, \tilde{g}) \). Let \(\pi \) be a 1-form on \(M, \tilde{\nabla} \) be the \(\pi \)-semi-symmetric conformal connection, \(\tilde{\nabla} \) be the symmetric connection associated to \(\tilde{\nabla} \). We suppose that \(\tilde{\nabla} \) is the Levi-Civita connection associated to another Riemannian metric \(\tilde{g} \) on \(M \). Let \(\tilde{\nabla} \) be a connection conformally related to the Levi-Civita connection \(\nabla \).

Then the deformation algebras \(\hat{U}(M, \tilde{\nabla} - \tilde{\nabla}) \) and \(\hat{U}(M, \tilde{\nabla} - \nabla) \) have the same \(\xi \)-subcharacteristic vector fields, where \(\xi = (\pi + 12W(g))^\sharp \).

Proof. One considers

\[
 \tilde{A} = \tilde{\nabla} - \tilde{\nabla} \quad \text{and} \quad \hat{A} = \tilde{\nabla} - \nabla.
\]

\(\tilde{\nabla} \) and \(\hat{\nabla} \) being geodesically related, one has

\[
 \hat{A}(X, Y) - \tilde{A}(X, Y) = \frac{1}{2} \pi(X)Y + \frac{1}{2} \pi(Y)X.
\]

Let \(X \in \hat{U}(M, \hat{A}) \) be a \(\xi \)-subcharacteristic vector field. So, there exist \(\lambda, \mu \in \mathcal{C}^\infty(M) \) such that \(\hat{A}(X, X) = \lambda X + \mu \xi \), where \(\lambda = (W(g) + \pi)(X) \) and \(\mu = -g(X, X) \).
Therefore $\tilde{A}(X, X) = \nu X + \mu \xi$, where $\nu = (W(g) + \frac{3}{2}\pi)(X)$ and X is a ξ-subcharacteristic vector field of the algebra $\mathcal{U}(M, \tilde{A})$.

The converse inclusion is analogous.

References

Author’s address:

Iulia Elena Hirică
University of Bucharest, Faculty of Mathematics, Department of Geometry,
14 Academiei Street, RO-010014, Bucharest 1, Romania.

email: ihirica@fmi.unibuc.ro