The Tzitzeica surface as solution of PDE systems

Vladimir Balan and Ștefania-Alina Vîlcea

Abstract

The present note emphasizes that a classical family of Tzitzeica surfaces is provided as general solution for two certain PDE systems. The infinitesimal generators of the symmetry algebra of the second PDE system are explicitly determined.

Mathematics Subject Classification: 58J70, 53C99, 35A15.

Key words: Tzitzeica surface, system of PDEs, Tzitzeica symmetry group.

The classical family of Tzitzeica surfaces $\Sigma : xyz = c, \ c \neq 0$ can be viewed as plot of a Monge chart $z = u(x, y)$, where $u : \mathbb{R}^* \times \mathbb{R}^* \to \mathbb{R}$,

$$u(x, y) = \frac{c}{xy}, \ \forall (x, y) \in \mathbb{R}^* \times \mathbb{R}^*.$$

(1.1)

It can be easily checked that this mapping satisfies the system of PDEs

$$\begin{align*}
&x^2u_{xx} - 2u = 0 \\
y^2u_{yy} - 2u = 0 \\
&xyu_{xy} - u = 0.
\end{align*}$$

(1.2)

The system can be rewritten in the terms of the second prolongation $u^{(2)} : D \to U^{(2)} = U \times U_1 \times U_2 \subset \mathbb{R}^6$ of the function u, where the coordinates in the Cartesian product space $U^{(2)}$ represent the derivatives of the function u of orders from 0 to 2,

$$u^{(2)} = (u; u_x, u_y; u_{xx}, u_{xy}, u_{yy}).$$

(1.3)

The total space $D \times U^{(2)}$, whose coordinates are the independent variables and the dependent variables up to order 2 is the second order jet space over $D \times U$ ([7]). Then the system (1.2) becomes

$$F(x, y, u^{(2)}) = 0,$$

(1.4)

where $F = (F_1, F_2, F_3) : D \times U^{(2)} \to \mathbb{R}^3$. The equation (1.4) is said to be of maximal rank, if the Jacobian matrix:
Regarding the system (1.2), we have the following

Theorem 1. The system of PDEs (1.2) has maximal rank and its general solution is described by the family of mappings (1.1), with \(c \in \mathbb{R} \).

Proof. One can easily check that

\[
(J_F(x, y, u^{(2)})) = \begin{pmatrix}
2xu_{xx} & 0 & -2 & 0 & 0 & x^2 & 0 & 0 \\
0 & 2yu_{yy} & -2 & 0 & 0 & 0 & 0 & y^2 \\
yu_{xy} & xu_{xy} & -1 & 0 & 0 & xy & 0 & 0
\end{pmatrix}
\]

has maximal rank under the stated conditions, since last three columns provide a equal to \(-x^2y^3\) nonzero minor. The first PDE is in fact an Euler equation in \(x \), and its solutions are of the form \(u_1(x, y) = c(y)x^2 + d(y)/x \); similarly, the second PDE has the general solution of the form \(u_2(x, y) = c(x)y^2 + f(x)/y \). The identification of the solutions \(u_1 \) and \(u_2 \) leads to the family of functions \(u(x, y) = \frac{ax^3+\beta y^2 + \gamma x^2+\delta}{y} \). Then the condition that \(u \) satisfies the last PDE leads to \(\alpha = \beta = \gamma = 0 \) and hence for \(c = \delta \), \(u \) has the form (1.1).

Remark 1. For \(u_{xy} \neq 0 \), the PDE system

\[
\begin{align*}
&u_{ux} - u_x u_y = 0 \\
&u_{xx} u_{yy} - 4u_{xy}^2 = 0
\end{align*}
\]

is of maximal rank. Moreover, we have the following

Theorem 2. The orbit of the family (1.1) under the action of the translations group of \(\mathbb{R}^2 \) on the domain coincides with the set of effectively \((x, y) \)-dependent rational solutions \(u \in \mathbb{R}(x, y) \backslash (\mathbb{R}(x) \cup \mathbb{R}(y)) \) of the system of PDE system (1.8).

Proof. The first PDE rewrites \(\frac{a}{u_{xy}} = \frac{a}{u_y} \) whence integration for \(y \) leads to the general solution \(u_0(x, y) = \alpha(x)b(y) \), which obviously contains (1.1). The condition that \(u_0 \) satisfies the second PDE leads to the pair of ODEs

\[
\frac{a''}{4(a')^2} = \frac{(b')^2}{bb''} = k \in \mathbb{R} \iff \begin{cases}
\frac{a''}{4a} = k \frac{a'}{a} \\
\frac{b''}{bb'} = \frac{1}{k} \frac{b'}{b}
\end{cases}
\]

where the accents denote derivatives w.r.t the corresponding variables. The solutions of the system reside in three classes, corresponding accordingly to \(k = \frac{1}{4}, k = 1 \) and \(k \in \mathbb{R} \backslash \{\frac{1}{4}, 1\} \). Namely, \(u \in S_1 \cup S_2 \cup S_3 \), where

\[
\begin{align*}
S_1 &= \{ab^{bz}/\sqrt{cy+d} \mid a, b, c, d \in \mathbb{R}, c^2 + d^2 > 0\} \\
S_2 &= \{ab^{by}/\sqrt{cx+d} \mid a, b, c, d \in \mathbb{R}, c^2 + d^2 > 0\} \\
S_3 &= \{(ax+b)^{1/(1-4k)}(cy+d)^{k/(k-1)} \mid a, b, c, d \in \mathbb{R}\}.
\end{align*}
\]
Similarly, the determining PDEs of the second PDE in (1.8) are
\begin{equation}
\frac{1}{x-1} = m \in \mathbb{Z} \quad \text{and} \quad \frac{k}{x-1} = n \in \mathbb{Z}
\end{equation}
lead to \(3m = -1 + \frac{4}{m+1} \in \mathbb{Z}\) and hence infer \(n = 1 \Rightarrow m = \frac{1}{2} \notin \mathbb{Z}\) or \(n = -1 \Rightarrow m = -1 \in \mathbb{Z}, \) whence \(k = \frac{1}{2}\). But then the solutions in \(S_3\) have the form
\[u(x, y) = \frac{1}{(ax+b)(cy+d)}\]. The effective dependence in \(x\) and \(y\) leads to \(a^2 + c^2 > 0,\) and an appropriate translation on \(\mathbb{R}^2\) gives to \(u\) the form (1.1).

Remark 2. According to [10], the general Tzitzeica surface PDE
\begin{equation}
u_{xx}u_{yy} - u_{xy}^2 = k(xu_x + yu_y - u)^4, k \in \mathbb{R}
\end{equation}
has a symmetry algebra with 8 generators, and (1.1) are exactly its solutions which are invariant under the action of the Lie subalgebra generated by infinitesimal symmetries
\begin{equation}X_1 = x\partial_x - u\partial_u, X_2 = y\partial_y - u\partial_u,
\end{equation}
where we denoted by \(\partial_u\) the partial derivative w.r.t. the corresponding index variable \(u\). However, the characterization of its general solution is an open problem.

Using the standard procedure from [7], one can determine the infinitesimal generators of the PDE system (1.8), as follows:

Theorem 3. The symmetry Lie algebra of the system of PDEs (1.8) is generated by the vector fields
\begin{equation}
X_1 = x\partial_x, X_2 = \partial_x, X_3 = y\partial_y, X_4 = \partial_y, X_5 = u\partial_u.
\end{equation}

Proof. The vanishing of the second prolongation of the PDE relative to the symmetry infinitesimal generator \(X = \xi\partial_x + \eta\partial_y + \varphi\partial_u\) and vanishing of the coefficients of independent monomials in the partials of \(u\) mod the first PDE leads to the determining PDEs:
\begin{align}
\xi_y &= 0, \xi_u = 0, \xi_{uu} = 0, \eta_x = 0, \eta_u = 0, \eta_{uu} = 0, \varphi_{xy} = 0
\end{align}
and
\begin{align}
u^2(\varphi_{uu} - \xi_{xu} - \eta_{yu}) - u\varphi_u + \varphi &= 0, \\
\varphi_y &= u(\varphi_{y} - \xi_{xy}), \varphi_x = u(\varphi_{x} - \eta_{xy}).
\end{align}
The relations (1.12) show that \(\xi = a(x)\) and \(\eta = b(y)\). Then (1.13) becomes an Euler equation of \(\varphi\) in \(u\), whence \(\varphi = uc(x, y) + d(x, y)u \log |u|\); the PDEs (1.14) lead to \(d\) constant. Then the algebra of symmetries of the first PDE is generated by the fields of the form
\begin{equation}
X = a(x)\partial_x + b(y)\partial_y + (uc(x, y) + d \cdot u \log |u|)\partial_u.
\end{equation}
Similarly, the determining PDEs of the second PDE in (1.8) are
\begin{align}
\xi_y &= 0, \xi_{yy} = 0, \xi_u = 0, \xi_{uu} = 0, \xi_{xy} = 0, \\
\eta_x &= 0, \eta_{xu} = 0, \eta_{xx} = 0, \eta_u = 0, \eta_{uu} = 0, \varphi_{xx} = 0, \varphi_{xy} = 0, \varphi_{yy} = 0
\end{align}
and
\begin{align}
\varphi_{uu} &= 2\xi_{xu}, \varphi_{uu} = 2\eta_{yu}, \xi_{xx} = 2\varphi_{xu}, \eta_{yy} = 2\varphi_{yu}, \\
\varphi_{uu} &= \xi_{xy} + \eta_{yu}, \eta_{xy} = \varphi_{xu}, \xi_{xy} = \varphi_{yu}.
\end{align}
These lead to the solutions
\[\xi = a_1x + a_2, \quad \eta = a_3y + a_4, \quad \varphi = a_5u + a_6x + a_7y + a_8, \]
where \(a_i \in \mathbb{R}, i = 1,8 \). Then the symmetry vector field \(X \) from (1.15) can be as well linearly expressed in terms of the generator fields
\begin{equation}
X_1 = x \partial_x, \quad X_2 = \partial_x, \quad X_3 = y \partial_y, \quad X_4 = \partial_y,
\end{equation}
\begin{equation}
X_5 = u \partial_u, \quad X_6 = x \partial_u, \quad X_7 = y \partial_u, \quad X_8 = \partial_u.
\end{equation}
Taking into account the alternate form of \(X \) in (1.15), it follows that the generators of the Lie algebra of symmetries for the PDE system (1.8) are the ones in (1.11). \(\square \)

Remark 3. The algebra generated by the fields (1.11) contains the subalgebra generated by the ones in (1.10); the extra generators are responsible for the translations which build orbits of Tzitzeica surfaces.

Acknowledgement. The present work is developed within the Grant CNCSIS MEN A1478/2004, MA51-04-01 and CNCSIS MEN A1478/2005.

References

Vladimir Balan and Ştefania-Alina Vîlcea
University Politehnica of Bucharest, Department of Mathematics
Splaiul Independenţei 313, RO-060042 Bucharest, Romania
email addresses: vbalan@mathem.pub.ro, mili_alina@yahoo.com