Hypersurfaces with Constant Scalar Curvature in a Hyperbolic Space Form

Liu Ximin and Su Weihong

Abstract

Let \(M^n \) be a complete hypersurface with constant normalized scalar curvature \(\bar{R} \) in a hyperbolic space form \(H^{n+1} \). We prove that if \(\bar{R} = R + 1 \geq 0 \) and the norm square \(|h|^2 \) of the second fundamental form of \(M^n \) satisfies
\[
n\bar{R} \leq \sup |h|^2 \leq \frac{n}{(n-2)(nR-2)}[n(n-1)\bar{R}^2 - 4(n-1)\bar{R} + n],
\]
then either \(\sup |h|^2 = n\bar{R} \) and \(M^n \) is a totally umbilical hypersurface; or
\[
\sup |h|^2 = \frac{n}{(n-2)(nR-2)}[n(n-1)\bar{R}^2 - 4(n-1)\bar{R} + n],
\]
and \(M^n \) is isometric to \(S^{n-1}(r) \times H^1(-1/(r^2 + 1)) \), for some \(r > 0 \).

Mathematics Subject Classification: 53C42, 53A10

Key words: hypersurface, hyperbolic space form, scalar curvature

1 Introduction

Let \(R^{n+1}(c) \) be an \((n+1)\)-dimensional Riemannian manifold with constant sectional curvature \(c \). We also call it a space form. When \(c > 0 \), \(R^{n+1}(c) = S^{n+1}(c) \) (i.e. \((n+1)\)-dimensional sphere space); when \(c = 0 \), \(R^{n+1}(c) = R^n \) (i.e. \((n+1)\)-dimensional Euclidean space); when \(c < 0 \), \(R^{n+1}(c) = H^{n+1}(c) \) (i.e. \((n+1)\)-dimensional hyperbolic space). We simply denote \(H^{n+1}(-1) \) by \(H^{n+1} \). Let \(M^n \) be an \(n \)-dimensional hypersurface in \(R^{n+1}(c) \), and \(e_1, \ldots, e_n \) a local orthonormal frame field on \(M^n \), \(\omega_1, \ldots, \omega_n \) its dual coframe field. Then the second fundamental form of \(M^n \) is
\[
h = \sum_{i,j} h_{ij} \omega_i \otimes \omega_j.
\]

Further, near any given point \(p \in M^n \), we can choose a local frame field \(e_1, \ldots, e_n \) so that at \(p \), \(\sum_{i,j} h_{ij} \omega_i \otimes \omega_j = \sum_i k_i \omega_i \otimes \omega_j \), then the Gauss equation writes
\[
R_{ijij} = c + k_ik_j, \quad i \neq j.
\]

\[n(n-1)(R-c) = n^2H^2 - |h|^2, \]

where \(R \) is the normalized scalar curvature, \(H = \frac{1}{n} \sum_{i} k_i \) the mean curvature and \(|h|^2 = \sum_{i} k_i^2 \) the norm square of the second fundamental form of \(M^n \).

As it is well known, there are many rigidity results for minimal hypersurfaces or hypersurfaces with constant mean curvature \(H \) in \(\mathbb{R}^{n+1} \) \((c \geq 0)\) by use of J. Simons’ method, for example, see [1], [4], [5], [8], [12] etc., but less were obtained for hypersurfaces immersed into a hyperbolic space form. Walter [13] gave a classification for non-negatively curved compact hypersurfaces in a space form under the assumption that the \(r \)th mean curvature is constant. Morvan-Wu [7], Wu [14] also proved some rigidity theorems for complete hypersurfaces \(M^n \) in a hyperbolic space form \(H^{n+1}(c) \) under the assumption that the mean curvature is constant and the Ricci curvature is non-negative. Moreover, they proved that \(M^n \) is a geodesic distance sphere in \(H^{n+1}(c) \) provided that it is compact.

On the other hand, Cheng-Yau [3] introduced a new self-adjoint differential operator \(\Box \) to study the hypersurfaces with constant scalar curvature. Later, Li [6] obtained interesting rigidity results for compact hypersurfaces with constant scalar curvature in space-forms using the Cheng-Yau’s self-adjoint operator \(\Box \).

In the present paper, we use Cheng-Yau’s self-adjoint operator \(\Box \) to study the complete hypersurfaces in a hyperbolic space form with constant scalar curvature, and prove the following theorem:

Theorem. Let \(M^n \) be an \(n \)-dimensional \((n \geq 3)\) complete hypersurface with constant normalized scalar curvature \(R \) in \(H^{n+1} \). If

1. \(\bar{R} = R + 1 \geq 0 \),
2. the norm square \(|h|^2\) of the second fundamental form of \(M^n \) satisfies

\[
 n\bar{R} \leq \sup |h|^2 \leq \frac{n}{(n-2)(nR-2)} [n(n-1)\bar{R}^2 - 4(n-1)\bar{R} + n],
\]

then either

\[\sup |h|^2 = n\bar{R} \]

and \(M^n \) is a totally umbilical hypersurface; or

\[\sup |h|^2 = \frac{n}{(n-2)(nR-2)} [n(n-1)\bar{R}^2 - 4(n-1)\bar{R} + n], \]

and \(M^n \) is isometric to \(S^{n-1}(r) \times H^1(-1/r^2 + 1) \), for some \(r > 0 \).

2 Preliminaries

Let \(M^n \) be an \(n \)-dimensional hypersurface in \(H^{n+1} \). We choose a local orthonormal frame \(e_1, \ldots, e_{n+1} \) in \(H^{n+1} \) such that at each point of \(M^n \), \(e_1, \ldots, e_n \) span the tangent space of \(M^n \) and form an orthonormal frame there. Let \(\omega_1, \ldots, \omega_{n+1} \) be its dual coframe. In this paper, we use the following convention on the range of indices:
Then the structure equations of H^{n+1} are given by

\begin{equation}
\mathbf{d}\omega_A = \sum_B \omega_{AB} \wedge \omega_B, \quad \omega_{AB} + \omega_{BA} = 0,
\end{equation}

\begin{equation}
\mathbf{d}\omega_{AB} = \sum_C \omega_{AC} \wedge \omega_{CB} - \frac{1}{2} \sum_{C,D} K_{ABCD} \omega_C \wedge \omega_D,
\end{equation}

\begin{equation}
K_{ABCD} = -(\delta_{AC} \delta_{BD} - \delta_{AD} \delta_{BC}).
\end{equation}

Restricting these forms to M^n, we have

\begin{equation}
\omega_{n+1} = 0.
\end{equation}

From Cartan’s lemma we can write

\begin{equation}
\omega_{n+1} = \sum_j h_{ij} \omega_j, \quad h_{ij} = h_{ji}.
\end{equation}

From these formulas, we obtain the structure equations of M^n:

\begin{equation}
\mathbf{d}\omega_i = \sum_j \omega_{ij} \wedge \omega_j, \quad \omega_{ij} + \omega_{ji} = 0,
\end{equation}

\begin{equation}
\mathbf{d}\omega_{ij} = \sum_k \omega_{ik} \wedge \omega_{kj} - \frac{1}{2} \sum_{k,l} R_{ijkl} \omega_k \wedge \omega_l,
\end{equation}

\begin{equation}
R_{ijkl} = -(\delta_{ik} \delta_{jl} - \delta_{il} \delta_{jk}) + (h_{ik} h_{jl} - h_{il} h_{jk}),
\end{equation}

where R_{ijkl} are the components of the curvature tensor of M^n and

\begin{equation}
h = \sum_{i,j} h_{ij} \omega_i \otimes \omega_j
\end{equation}

is the second fundamental form of M^n. We also have

\begin{equation}
R_{ij} = -(n-1)\delta_{ij} + n H h_{ij} - \sum_k h_{ik} h_{kj},
\end{equation}

\begin{equation}
n(n-1)(R + 1) = n^2 H^2 - |h|^2,
\end{equation}

where R is the normalized scalar curvature, and H the mean curvature.

Define the first and the second covariant derivatives of h_{ij}, say h_{ijk} and h_{ijkl} by

\begin{equation}
\sum_k h_{ijk} \omega_k = dh_{ij} + \sum_k h_{kj} \omega_{ki} + \sum_k h_{ik} \omega_{kj},
\end{equation}

\begin{equation}
\sum_t h_{ijkt} \omega_t = dh_{ijt} + \sum_m h_{mjk} \omega_{mi} + \sum_m h_{imk} \omega_{mj} + \sum_m h_{ijm} \omega_{mk}.
\end{equation}

Then we have the Codazzi equation

\begin{equation}
\sum_{k,l} h_{ijkl} \omega_l = dh_{ijk} + \sum_m h_{mj} \omega_{mki} + \sum_m h_{im} \omega_{mjk} + \sum_m h_{ijm} \omega_{mk}.
\end{equation}
\[h_{ijk} = h_{ikj}, \quad (17) \]

and the Ricci identity

\[h_{ijkl} - h_{ijlk} = \sum_m h_{mj} R_{mikl} + \sum_m h_{im} R_{mjkl}. \quad (18) \]

For a \(C^2 \)-function \(f \) defined on \(M^n \), we defined its gradient and Hessian \((f_{ij}) \) by the following formulas

\[df = \sum_i f_i \omega_i, \quad \sum_i f_{ij} \omega_j = df_i + \sum_j f_j \omega_{ji}. \quad (19) \]

The Laplacian of \(f \) is defined by \(\Delta f = \sum_i f_{ii} \).

Let \(\phi = \sum_{ij} \phi_{ij} \omega_i \otimes \omega_j \) be a symmetric tensor defined on \(M^n \), where

\[\phi_{ij} = nH \delta_{ij} - h_{ij}. \quad (20) \]

Following Cheng-Yau [3], we introduce an operator \(\Box \) associated to \(\phi \) acting on any \(C^2 \)-function \(f \) by

\[\Box f = \sum_{ij} \phi_{ij} f_{ij} = \sum_{ij} (nH \delta_{ij} - h_{ij}) f_{ij}. \quad (21) \]

Since \(\phi_{ij} \) is divergence-free, it follows [3] that the operator \(\Box \) is self-adjoint relative to the \(L^2 \) inner product of \(M^n \), i.e.

\[\int_{M^n} f \Box g = \int_{M^n} g \Box f. \quad (22) \]

We can choose a local frame field \(e_1, \ldots, e_n \) at any point \(p \in M^n \), such that \(h_{ij} = k_i \delta_{ij} \) at \(p \), by use of (21) and (14), we have

\[\Box (nH) = nH \Delta (nH) - \sum_i k_i (nH)_{ii} = \]

\[= \frac{1}{2} \Delta (nH)^2 - \sum_i (nH)_i^2 - \sum_i k_i (nH)_{ii} = \]

\[= \frac{1}{2} n(n - 1) \Delta R + \frac{1}{2} \Delta |h|^2 - n^2 |\nabla H|^2 - \sum_i k_i (nH)_{ii}. \quad (23) \]

On the other hand, through a standard calculation by use of (17) and (18), we get

\[\frac{1}{2} \Delta |h|^2 = \sum_{i,j,k} h_{ijk}^2 + \sum_i k_i (nH)_{ii} + \frac{1}{2} \sum_{i,j} R_{ijij} (k_i - k_j)^2. \quad (24) \]

Putting (24) into (23), we have

\[\Box (nH) = \frac{1}{2} n(n - 1) \Delta R + |\nabla h|^2 - n^2 |\nabla H|^2 + \frac{1}{2} \sum_{i,j} R_{ijij} (k_i - k_j)^2. \quad (25) \]
From (11), we have \(R_{ijij} = -1 + k_i k_j, \ i \neq j, \) and by putting this into (25), we obtain

\[
\Box (nH) = \frac{1}{2} n(n-1) \Delta R + |\nabla h|^2 - n^2 |\nabla H|^2 - n|h|^2 + n^2 H^2 - |h|^4 + nH \sum_i k_i^3.
\]

(26)

Let \(\mu_i = k_i - H \) and \(|Z|^2 = \sum_i \mu_i^2, \) we have

\[
\sum_i \mu_i = 0, \quad |Z|^2 = |h|^2 - nH^2,
\]

(27)

\[
\sum_i k_i^3 = \sum_i \mu_i^3 + 3H |Z|^2 + nH^3.
\]

(28)

From (26)-(28), we get

\[
\Box (nH) = \frac{1}{2} n(n-1) \Delta R + |\nabla h|^2 - n^2 |\nabla H|^2 + |Z|^2 (-n + nH^2 - |Z|^2) + nH \sum_i \mu_i^3.
\]

(29)

We need the following algebraic lemma due to M. Okumura [9] (see also [1]).

Lemma 2.1. Let \(\mu_i, \ i = 1, \ldots, n, \) be real numbers such that \(\sum_i \mu_i = 0 \) and \(\sum_i \mu_i^2 = \beta^2, \) where \(\beta = \text{constant} \geq 0. \) Then

\[
- \frac{n-2}{\sqrt{n(n-1)}} \beta^3 \leq \sum_i \mu_i^3 \leq \frac{n-2}{\sqrt{n(n-1)}} \beta^3,
\]

(30)

and the equality holds in (30) if and only if at least \((n-1) \) of the \(\mu_i \) are equal.

By use of Lemma 2.1, we have

\[
\Box (nH) \geq \frac{1}{2} n(n-1) \Delta R + |\nabla h|^2 - n^2 |\nabla H|^2 + (|h|^2 - nH^2) \left(-n + 2nH^2 - |h|^2 - \frac{n(n-2)}{\sqrt{n(n-1)}} H \sqrt{|h|^2 - nH^2} \right).
\]

(31)

3 Umbilical hypersurface in a hyperbolic space form

In this section, we consider some special hypersurfaces in a hyperbolic space form which we will need in the following discussion.

First we want to give a description of the real hyperbolic space-form \(H^{n+1}(c) \) of constant curvature \(c \ (< 0) \). For any two vectors \(x \) and \(y \) in \(R^{n+2} \), we set

\[
g(x, y) = \sum_{i=1}^{n+1} x_i y_i - x_{n+2} y_{n+2}.
\]

\((R^{n+2}, g) \) is the so-called Minkowski space-time. Denote \(\rho = \sqrt{-1/c} \). We define
Then $H^{n+1}(c)$ is a connected simply-connected hypersurface of R^{n+2}. It is not hard to check that the restriction of g to the tangent space of $H^{n+1}(c)$ yields a complete Riemannian metric of constant curvature c. Here we obtain a model of a real hyperbolic space form.

We are interested in those complete hypersurfaces with at most two distinct constant principal curvatures in $H^{n+1}(c)$. This kind of hypersurfaces was described by Lawson [5] and completely classified by Ryan [11].

Lemma 3.1 [11]. Let M^n be a complete hypersurface in $H^{n+1}(c)$. Suppose that, under a suitable choice of a local orthonormal tangent frame field of TM^n, the shape operator over TM^n is expressed as a matrix A. If M^n has at most two distinct constant principal curvatures in $H^n(c)$, then it is congruent to one of the following:

1. $M_1 = \{ x \in H^{n+1}(c) \mid x_1 = 0 \}$. In this case, $A = 0$, and M_1 is totally geodesic. Hence M_1 is isometric to $H^n(c)$;

2. $M_2 = \{ x \in H^{n+1}(c) \mid x_1 = r > 0 \}$. In this case, $A = \frac{1}{\rho^2} I_n$, where I_n denotes the identity matrix of degree n, and M_2 is isometric to $H^n(-1/(r^2 + \rho^2))$;

3. $M_3 = \{ x \in H^{n+1}(c) \mid x_{n+2} = x_{n+1} + \rho \}$. In this case, $A = \frac{1}{\rho} I_n$, and M_3 is isometric to a Euclidean space E^n;

4. $M_4 = \{ x \in H^{n+1}(c) \mid \sum_{i=1}^{n+1} x_i^2 = r^2 > 0 \}$. In this case, $A = \sqrt{1/r^2 + 1/\rho^2} I_n$, and M_4 is isometric to a round sphere $S^n(r)$ of radius r;

5. $M_5 = \{ x \in H^{n+1}(c) \mid \sum_{i=1}^{k+1} x_i^2 = r^2 > 0, \sum_{j=k+2}^{n+1} x_j^2 - x_{n+2}^2 = -\rho^2 - r^2 \}$. In this case, $A = \lambda I_k \oplus \nu I_{n-k}$, where $\lambda = \sqrt{1/\rho^2 + 1/r^2}$, and $\nu = \frac{1}{\sqrt{1/r^2 + 1/\rho^2}}$, M_5 is isometric to $S^k(r) \times H^{n-k}(-1/(r^2 + \rho^2))$.

Remark 3.1. M_1, \ldots, M_5 are often called the standard examples of complete hypersurfaces in $H^{n+1}(c)$ with at most two distinct constant principal curvatures. It is obvious that M_1, \ldots, M_4 are totally umbilical. In the sense of Chen [2], they are called the hyperspheres of $H^{n+1}(c)$. M_5 is called the horosphere and M_4 the geodesic distance sphere of $H^{n+1}(c)$.

Remark 3.2. Ryan [11] stated that the shape operator of M_2 is $A = \sqrt{1/r^2 - 1/\rho^2} I_n$, and M_2 is isometric to $H^n(-1/r^2)$, where $r \leq \rho$. This is incorrect and we have corrected it here.

4 The proof of Theorem

The following lemma essentially due to Cheng-Yau [3].
Lemma 4.1. Let M^n be an n-dimensional hypersurface in H^{n+1}. Suppose that the normalized scalar curvature $R = \text{constant}$ and $R \geq -1$. Then $|\nabla h|^2 \geq n^2|\nabla H|^2$.

Proof. From (14),
\[n^2H^2 - \sum_{i,j} h^2_{ij} = n(n - 1)(R + 1). \]

Taking the covariant derivative of the above expression, and using the fact $R = \text{constant}$, we get
\[n^2HH_k = \sum_{i,j} h_{ij}h_{ijk}. \]

By Cauchy-Schwarz inequality, we have
\[
\sum_k n^4H^2(H_k)^2 = \sum_k (\sum_{i,j} h_{ij}h_{ijk})^2 \leq (\sum_{i,j} h^2_{ij}) \sum_{i,j,k} h^2_{ijk},
\]
that is
\[n^4H^2|\nabla H|^2 \leq |h|^2|\nabla h|^2. \]

On the other hand, from $R + 1 \geq 0$, we have $n^2H^2 - |h|^2 \geq 0$. Thus
\[H^2|\nabla h|^2 \geq n^2H^2|\nabla H|^2 \]
and Lemma 4.1 follows.

From the assumption of the Theorem that R is constant and $R = \bar{R} + 1 \geq 0$ and Lemma 4.1 we have
\[
\square(nH) \geq (|h|^2 - nH^2) \left(-n + 2nH^2 - |h|^2 - \frac{n(n-2)}{n(n-1)}H \sqrt{|h|^2 - nH^2}\right).
\]

By Gauss equation (14) we know that
\[
|Z|^2 = |h|^2 - nH^2 = \frac{n-1}{n}(|h|^2 - n\bar{R}).
\]

From (32) and (33) we have
\[
\square(nH) \geq \frac{n-1}{n}(|h|^2 - n\bar{R})\phi_H(|h|),
\]
where
\[
\phi_H(|h|) = -n + 2nH^2 - |h|^2 - \frac{n(n-2)}{\sqrt{n(n-1)}}H \sqrt{|h|^2 - nH^2}.
\]

By (33) we can write $\phi_H(|h|)$ as
\[
\phi_{\bar{R}}(|h|) = -n + 2(n-1)\bar{R} - \frac{n-2}{n} |h|^2 - \frac{n-2}{n} \sqrt{(n(n-1)\bar{R} + |h|^2)(|h|^2 - n\bar{R})}.
\]

Therefore (34) becomes
\[
\square(nH) \geq \frac{n-1}{n}(|h|^2 - n\bar{R})\phi_{\bar{R}}(|h|),
\]
It is a direct check that our assumption
\[\sup |h|^2 \leq \frac{n}{(n - 2)(nR - 2)} [n(n - 1)\bar{R}^2 - 4(n - 1)\bar{R} + n] \]
is equivalent to
\[(-n + 2(n - 1)\bar{R} - \frac{n - 2}{n} \sup |h|^2)^2 \geq \frac{(n - 2)^2}{n^2} (n(n - 1)\bar{R} + \sup |h|^2)(\sup |h|^2 - n\bar{R}). \]
But it is clear from (37) that (38) is equivalent to
\[-n + 2(n - 1)\bar{R} - \frac{n - 2}{n} \sup |h|^2 \geq \frac{n - 2}{n} \sqrt{(n(n - 1)\bar{R} + \sup |h|^2)(\sup |h|^2 - n\bar{R})}. \]
So under the hypothesis that
\[\sup |h|^2 \leq \frac{n}{(n - 2)(nR - 2)} [n(n - 1)\bar{R}^2 - 4(n - 1)\bar{R} + n], \]
we have
\[\phi_{\bar{R}}(\sqrt{\sup |h|^2}) \geq 0. \]

On the other hand,
\[\Box(nH) = \sum_{i,j} (nH \delta_{ij} - nh_{ij})(nH)_{ij} = \sum_i (nH - nh_{ii})(nH)_{ii} = \]
\[= n \sum_i H(nH)_{ii} - n \sum_i k_i(nH)_{ii} \leq (|H|_{max} - C)\Delta(nH), \]
where $|H|_{max}$ is the maximum of the mean curvature H and $C = \min k_i$ is the minimum of the principal curvatures of M^n.

Now we need the following maximum principle at infinity for complete manifolds due to Omori [10] and Yau [15]:

Lemma 4.2. Let M^n be an n-dimensional complete Riemannian manifold whose Ricci curvature is bounded from below and $f : M^n \to \mathbb{R}$ a smooth function bounded from below. Then for each $\varepsilon > 0$ there exists a point $p_\varepsilon \in M^n$ such that

(i) $|\nabla f|(p_\varepsilon) < \varepsilon$,

(ii) $\Delta f(p_\varepsilon) > -\varepsilon$,

(iii) $\inf f \leq f(p_\varepsilon) \leq \inf f + \varepsilon$.

From the hypothesis of the Theorem and Gauss equation, we know that the Ricci curvature is bounded below. So we may apply Lemma 4.2 to the following smooth function f on M^n defined by

\[f = \frac{1}{\sqrt{1 + (nH)^2}}. \]

It is immediate to check that
Let \(n \) have either (48) or (47) then equalities hold in (30) and Lemma 4.1, we follow that hypersurfaces with constant scalar curvature.

By Lemma 4.2 we can find a sequence of points \(p_k, k \in N \) in \(M^n \), such that

\[
(44) \quad \lim_{k \to \infty} f(p_k) = \inf f, \quad \Delta f(p_k) > -\frac{1}{k}, \quad |\nabla f|^2(p_k) < \frac{1}{k^2}.
\]

Using (44) in the equations (42) and (43) and the fact that

\[
(45) \quad \sup_{p \in M_n}(nH)(p) = \sup_{p \in M_n}(nH)(p),
\]

we get

\[
(46) \quad -\frac{1}{k} \leq -\frac{1}{2} \frac{\Delta(nH)^2}{(1 + (nH)^2)^{3/2}}(p_k) + \frac{3}{k^2} (1 + (nH)^2(p_k))^{1/2}.
\]

Hence we obtain

\[
(47) \quad \frac{\Delta(nH)^2}{(1 + (nH)^2)^2}(p_k) < \frac{2}{k} \left(\frac{1}{\sqrt{1 + (nH)^2(p_k)}} + \frac{3}{k} \right).
\]

On the other hand, by (36) and (41), we have

\[
(48) \quad \frac{n-1}{n} (|h|^2 - n\bar{R}) \bar{\phi}_R(|h|) \leq \Delta(nH) \leq n(|H|_{\text{max}} - C) \Delta(nH).
\]

At points \(p_k \) of the sequence given in (44), this becomes

\[
(49) \quad \frac{n-1}{n} (|h|^2(p_k) - n\bar{R}) \bar{\phi}_R(|h|(p_k)) \leq \Delta(nH(p_k)) \leq n(|H|_{\text{max}} - C) \Delta(nH)(p_k).
\]

Let \(k \to \infty \) and use (47) we have that the right hand side of (49) goes to zero, so we have either \(\frac{n-1}{n} (\sup |h|^2 - n\bar{R}) = 0 \), i.e. \(\sup |h|^2 = n\bar{R} \) or \(\bar{\phi}_R(\sqrt{\sup |h|^2}) = 0 \).

If \(\sup |h|^2 = n\bar{R} \), by (33) \(|Z|^2 = \frac{n-1}{n} (|h|^2-n\bar{R}) \) we have \(\sup |Z|^2 = \frac{n-1}{n} (\sup |h|^2-n\bar{R}) = 0 \), then \(|Z|^2 = 0 \) and \(M^n \) is totally umbilical.

If \(\bar{\phi}_R(\sqrt{\sup |h|^2}) = 0 \), it is easy to prove that

\[
\sup H^2 = \frac{1}{n^2} \left[(n-1)^2 \frac{n\bar{R}+2}{n-2} - 2(n-1) + \frac{n-2}{n\bar{R}+2} \right],
\]

then equalities hold in (30) and Lemma 4.1, we follow that \(k_i = \text{constant} \) for all \(i \) and \(n-1 \) of the \(k_i \) are equal. After renumberation if necessary, we can assume

\[
k_1 = k_2 = \cdots = k_{n-1}, \quad k_1 \neq k_n.
\]
Therefore, from Lemma 3.1, we know that M^n is a hypersurface in H^{n+1} with two distinct principal curvatures, and M^n is isometric to $S^{n-1}(r) \times H^1(-1/(r^2 + 1))$, for some $r > 0$. This completes the proof of Theorem.

When M^n is compact, we can prove

Corollary 1. Let M^n be an n-dimensional ($n \geq 3$) compact hypersurface with constant normalized scalar curvature R in H^{n+1}. If

1. $\bar{R} = R + 1 \geq 0$,
2. the norm square $|h|^2$ of the second fundamental form of M^n satisfies

$$n\bar{R} \leq |h|^2 \leq \frac{n}{(n-2)(n\bar{R}-2)}[n(n-1)\bar{R}^2 - 4(n-1)\bar{R} + n],$$

then M^n is a totally umbilical hypersurface.

Proof. From (36) we have

$$\Box(nH) \geq \frac{n}{n-1}(h^2 - n\bar{R})[-n + 2(n-1)\bar{R} - \frac{n-2}{n}|h|^2 - \frac{n-2}{n}\sqrt{(n(n-1)\bar{R} + |h|^2)(|h|^2 - n\bar{R})}],$$

(51)

It is a direct check that our assumption condition (50) is equivalent to

$$-n + 2(n-1)\bar{R} - \frac{n-2}{n}|h|^2 \geq \frac{(n-2)^2}{n^2}(n(n-1)\bar{R} + |h|^2)(|h|^2 - n\bar{R}).$$

But it is clear from (50) that (52) is equivalent to

$$-n + 2(n-1)\bar{R} - \frac{n-2}{n}|h|^2 \geq \frac{n-2}{n}\sqrt{(n(n-1)\bar{R} + |h|^2)(|h|^2 - n\bar{R})},$$

therefore the right hand side of (51) is non-negative. Because M^n is compact and the operator \Box is self-adjoint, we have $\int_{M^n}\Box(nH)dv = 0$. Thus either

$$|h|^2 = n\bar{R},$$

(54)

that is, $|h|^2 = nH^2$, M^n is a totally umbilical hypersurface; or

$$|h|^2 = \frac{n}{(n-2)(n\bar{R}-2)}[n(n-1)\bar{R}^2 - 4(n-1)\bar{R} + n].$$

(55)

In the latter case, equalities hold in (30) and Lemma 4.1, and it follows that M^n has at most two distinct constant principal curvatures. We conclude that M^n is totally umbilical from the compactness of M^n. This completes the proof of Corollary 1.

Corollary 2. Let M^n be an n-dimensional compact hypersurface with constant normalized scalar curvature R and $R + 1 \geq 0$ in H^{n+1}. If M has non-negative sectional curvature, then M is a totally umbilical hypersurface.

Proof. Because M^n is compact and the operator \Box is self-adjoint, form (25), we have
Hypersurfaces with Constant Scalar Curvature

\[\int_{M^n} \left[|\nabla h|^2 - n^2 |\nabla H|^2 + \frac{1}{2} \sum_{i,j} R_{ijij} (k_i - k_j)^2 \right] = 0. \]

(56)

If \(M^n \) has constant normalized scalar curvature \(R \) and \(R \geq -1 \), from Lemma 4.1, we have \(|\nabla h|^2 \geq n^2 |\nabla H|^2 \). So if \(M \) has non-negative sectional curvature, form (56) we have \(|\nabla h|^2 = n^2 |\nabla H|^2 \) and \(R_{ijij} = 0 \), when \(k_i \neq k_j \) on \(M^n \). Since \(R_{ijij} = -1 + k_i k_j \), then either \(M^n \) is totally umbilical, or \(M^n \) has two different principal curvatures, in the latter case, \(M^n \) is still totally umbilical from the compactness of \(M^n \). This completes the proof of Corollary 2.

References

Department of Mathematical Sciences
Rutgers University, Camden, New Jersey 08102, USA
email: xmliu@camden.rutgers.edu

Department of Applied Mathematics
Beijing Institute of Technology
Beijing 100081, China