On the Harmonic and Killing Tensor Filed on a Compact Riemannian Manifold

Gr. Tsagas and Gr. Bitis

Abstract

Let \((M,g)\) be an orientable and compact Riemannian manifold. The aim of the present paper is to study the vector spaces \(H^q(M,\mathbb{R})\) and \(K^q(M,\mathbb{R})\) of harmonic \(q\)-forms and Killing tensor fields of order \(q\) on a compact Riemannian manifold, where \(q = 2, 3, \ldots, n-2\) and \(n = \text{dim } M\).

Mathematics Subject Classification: 53C20

Key words: A compact Riemannian manifold, harmonic \(q\)-form, Killing tensor field of order \(q\), Ricci tensor field, Riemannian tensor field and a special quadratic form.

1 Introduction

Let \((M,g)\) be a compact Riemannian manifold of dimension \(n\). We denote by \(K^q(M,\mathbb{R})\) the vector space of Killing tensor fields of order \(q\) and \(H^q(M,\mathbb{R})\) the vector space of harmonic \(q\)-forms on \(M, q = 2, \ldots, n-2\).

The purpose of the present paper is to study these vector spaces \(K^q(M,\mathbb{R})\) and \(H^q(M,\mathbb{R})\). The whole paper contains five paragraphs. Each of them is analyzed as follows: The first paragraph is the introduction. Special tensor fields on a compact Riemannian manifolds are included in the second paragraph. The Killing tensor fields on a Riemannian manifold are studied in the third paragraph. The fourth paragraph contains harmonic \(q\)-forms on a compact Riemannian manifold. Some topological invariants of a compact manifold are studied in the last paragraph.

2 Tensor fields on a manifold

Let \((M,g)\) be a compact Riemannian manifold of dimension \(n\). We consider an atlas \((U_α, φ_α)_{α \in A}\), where \((U_α, φ_α)\) is a chart on \(M\) with local coordinate system \(\{x^1_α, \ldots, x^n_α\}\).

Let \(w\) be a \(q\)-form on \(M\), that is \(w \in Λ^q(M)\). Therefore \(w\) on the chart \((U, φ)\) with local coordinate system \(\{x^1, \ldots, x^n\}\) can take the form

\[w = \sum_{\beta} w_{αβ} \, dx^α \wedge \cdots \wedge dx^β,
\]

where \(w_{αβ} : \mathbb{R}^n \to \mathbb{R}\) are \(C^∞\) functions on \(U\).
\(w = \frac{1}{q!} w_{i_1 i_2 \ldots i_q} dx^{i_1} \wedge dx^{i_2} \wedge \ldots \wedge dx^{i_q} \)

where \(1 \leq i_1 < i_2 < \ldots < i_q < n \) and \(w_{i_1 \ldots i_q} \) the components of \(w \) on the chart \((U, \phi)\).

The local norm of \(w \) is defined by

\[|w|^2 = \frac{1}{q!} w_{i_1 \ldots i_q} w^{i_1 \ldots i_q} \]

where

\(w^{i_1 \ldots i_q} = g^{i_1 j_1} \ldots g^{i_q j_q} w_{i_1 \ldots i_q} \)

This \(q \)-form \(w \), by means of (2), gives a function \(|w|^2 \) on \(M \), that means \(|w|^2 \in D^0(M) \).

Hence we have

\[\frac{1}{2} \Delta \left(|w|^2 \right) = \langle \delta \Delta w, w \rangle = -|\nabla w|^2 \]

The formula (4) by integration implies

\[\int_M \left[\langle \delta \Delta w, w \rangle = -|\nabla w|^2 \right] dM \]

where \(dM \) is the volume element of \((M, g)\).

If \(w \in \Lambda^q(M, \mathbb{R}) \), then \(\Delta w \in \Lambda^q(M) \), where \(\Delta \) is the Laplace operator acting on the vector space \(\Lambda^q(M, \mathbb{R}) \) as a linear operator. On the chart \((U, \phi)\) with local coordinate system we have

\[\Delta w = \frac{1}{q!} \left[\sum_{s=1}^{q} p^v_{i_s} w_{i_1 \ldots i_s-1 v i_{s+1} \ldots i_q} - \sum_{1 \leq s < t \leq q} R^{vw}_{i_t i_s} w_{i_1 i_{s-1} v i_{t+1} \ldots i_{s-1} v i_{s+1} \ldots i_q} \right] dx^{i_1} \wedge \ldots \wedge dx^{i_q} \]

Hence the components of \(\Delta w \) on \((U, \phi)\) have the form

\[(\Delta w)_{i_1 \ldots i_q} = \frac{1}{q!} \left[-g^{i_1 j_1} \nabla_j w_{i_1 \ldots i_q} + \sum_{s=1}^{q} p^v_{i_s} w_{i_1 \ldots i_{s-1} v i_{s+1} \ldots i_q} + \sum_{1 \leq s < t \leq q} R^{vw}_{i_t i_s} w_{i_1 i_{s-1} v i_{t+1} \ldots i_{s-1} v i_{s+1} \ldots i_q} \right] \]

We obtain the inner product of the \(q \)-forms \(w \) and \(\Delta w \), which takes the form

\[\langle \Delta w, w \rangle = \langle \delta \nabla w, w \rangle + \frac{1}{(\phi - 1)!} F^q_{\phi} (w) \]

where \(F^q_{\phi} (w) \) is the following quadratic form
(9) \[F_q(w) = p_{i_1 j_1}^{i_2 j_2 \ldots i_q j_q} w_{i_1 \ldots i_q} + \frac{q-1}{2} R_{i_1 j_1 k_1 l_1} w_{i_1 j_1}^{i_2 j_2 \ldots i_q j_q} w_{k_1 l_1}^{k_2 l_2} + \frac{1}{q} F_q(w, w) \]

It can be easily proved the following relation

(10) \[\frac{1}{2} \Delta (|w|^2) = \langle \Delta w, w \rangle - |\nabla w|^2 - \frac{1}{(q-1)!} F_q(w, w) \]

The integration of (10) implies

(11) \[\int_M \left[\langle \Delta w, w \rangle - |\nabla w|^2 - \frac{1}{(q-1)!} F_q(w, w) \right] dM = 0 \]

It can be easily obtained the relation

(12) \[\langle \Delta w - (q + 1) \delta w, w \rangle = -q \langle \delta w, w \rangle > - \frac{1}{(q-1)!} F_q(w, w) \]

The equality (12) by means of (4) becomes

(13) \[\frac{1}{2} \Delta (|w|^2) = -|\nabla w|^2 + \frac{1}{q} F_q(w, w) - \frac{1}{q} \langle \Delta w - (q + 1) \delta w, w \rangle \]

which by integration implies

(14) \[\int_M \left[\langle \Delta w - (q + 1) \delta w, w \rangle > + q |\nabla w|^2 - \frac{1}{(q-1)!} F_q(w, w) \right] dM = 0 \]

We use a new expression of the quadratic form \(F_q(w, w) \), which can be written

(15) \[F_q(w, w) = B_{i_1 j_1 \ldots i_q j_q} w_{i_1 \ldots i_q} w_{j_1 \ldots j_q} \]

where

(16) \[B_{i_1 j_1 \ldots i_q j_q} = \left(p_{i_1 j_1} g_{i_2 j_2} + \frac{q-1}{2} R_{i_1 j_1 i_2 j_2} \right) g_{i_3 j_3} \ldots g_{i_q j_q} \]

where the indices satisfy the inequalities

(17) \[1 \leq i_1, j_1, \ldots, i_q \leq n \quad 1 \leq j_1, j_2, \ldots, j_q \leq n \]

Proposition 1 The tensor field \(B = (B_{i_1 j_1 \ldots i_q j_q}) \) on a Riemannian manifold \((M, g)\) is symmetric with respect to \((i_1 j_1, i_2 j_2)\) and with respect of any of two indices \((i_{\nu}, j_{\nu})\) \(\nu = 3, 4, \ldots, q \) and as well as with respect to \((i_{1}, i_{2}, \ldots, i_{q})\) and \((j_{1}, j_{2}, \ldots, j_{q})\). Therefore the quadratic form (15) is symmetric with respect to \((i_{1}, i_{2}, \ldots, i_{q})\) and \((j_{1}, j_{2}, \ldots, j_{q})\).

Proof 1 It is known from the properties of the Ricci tensor field \(p \), the curvature tensor field \(R \) and the metric tensor field \(g \), we have the following relations

(18) \[p_{i_1 j_1} = p_{j_1 i_1}, \quad p_{i_2 j_2} = p_{j_2 i_2}, \quad R_{i_1 j_1 i_2 j_2} = R_{j_1 j_2 i_1 i_2} \]

(19) \[g_{i_1 j_1} = g_{j_1 i_1}, \quad g_{i_2 j_2} = g_{j_2 i_2}, \quad g_{i_3 j_3} = g_{j_3 i_3}, \ldots, \quad g_{i_q j_q} = g_{j_q i_q} \]
From (7) and (8) we conclude the first part of the proposition. The other part, that means the symmetric property of the tensor field with respect to the pair

\[(i_1, i_2, \ldots, i_q), (j_1, j_2, \ldots, j_q)\]

is a consequence of the same relations (18) and (19) \(\Box\)

Now, we introduce a new quadratic form \(\hat{F}_q (w, w)\) on the vector space \(\Lambda^q (M, \mathbb{R})\) as follow

\[(21) \quad \hat{F}_q (w, w) = B'_{(i_1\ldots i_q)(j_1\ldots j_q)} w^{i_1\ldots i_q} w^{j_1\ldots j_q}\]

with the condition that the symbol \((i_1, i_2, \ldots, i_q)\) means

\[1 \leq i_1 < i_2 < \ldots < i_q \leq n\]

For this reason we form the tensor field

\[(22) \quad B'_{(i_1\ldots i_q)(j_1\ldots j_q)} = B_{k_1\ldots k_q l_1\ldots l_q} \delta_{i_1\ldots i_q}^{k_1\ldots k_q} \delta_{j_1\ldots j_q}^{l_1\ldots l_q}\]

where

\[(23) \quad \delta_{i_1\ldots i_q}^{k_1\ldots k_q} \quad \text{and} \quad \delta_{j_1\ldots j_q}^{l_1\ldots l_q}\]

are the Kronecker’s generalized symbols which are given by the formulas

\[(24) \quad \delta_{i_1\ldots i_q}^{k_1\ldots k_q} = \begin{vmatrix} \delta_{i_1}^{k_1} & \ldots & \delta_{i_1}^{k_q} \\ \ldots & \ldots & \ldots \\ \delta_{i_q}^{k_1} & \ldots & \delta_{i_q}^{k_q} \end{vmatrix}, \quad \delta_{j_1\ldots j_q}^{l_1\ldots l_q} = \begin{vmatrix} \delta_{j_1}^{l_1} & \ldots & \delta_{j_1}^{l_q} \\ \ldots & \ldots & \ldots \\ \delta_{j_q}^{l_1} & \ldots & \delta_{j_q}^{l_q} \end{vmatrix}\]

Now, we can prove the following proposition

Proposition 2 The tensor field \(B' = \left(B'_{(i_1\ldots i_q)(j_1\ldots j_q)}\right)\) is symmetric with respect to \([(i_1\ldots i_q), (j_1, \ldots, j_q)\]}

Proof 2 According to the proposition 1 we have

\[(25) \quad B_{k_1\ldots k_q l_1\ldots l_q} = B_{l_1\ldots l_q k_1\ldots k_q}\]

From the properties of Kronecker’s tensor field we conclude that

\[(26) \quad \delta_{j}^{i} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}\]

\[(27) \quad \delta_{j_1\ldots j_q}^{l_1\ldots l_q} = \delta_{i_1\ldots i_q}^{k_1\ldots k_q}\]

From (25), (26) and (27) we have

\[(28) \quad B'_{(i_1\ldots i_q)(j_1\ldots j_q)} = B'_{(j_1\ldots j_q)(i_1\ldots i_q)} \Box\]
Now, under the introduction of the tensor field B the quadratic form $\hat{F}_q (w, w)$ becomes

$$\hat{F}_q (w, w) = \frac{1}{(q-1)!} B_{(i_1 \ldots i_q)(j_1 \ldots j_q)} w^{i_1 \ldots i_q} w^{j_1 \ldots j_q}$$

where the indices satisfy the inequalities

$$1 \leq i_1 < i_2 < \ldots < i_q \leq n \quad 1 \leq j_1 < j_2 < \ldots < j_q \leq n$$

The relation between the quadratic forms $F_q (w, w)$ and $\hat{F}_q (w, w)$ is the following

$$\hat{F}_q (w, w) = \frac{1}{(q-1)!} F_q (w, w)$$

Now, we can prove the following theorem

Theorem 3 Let (M, g) be a compact Riemannian manifold of dimension n, $n \geq 3$. The nullity of the quadratic form $\hat{F}_q (w, w)$ is a global property.

Proof 3 Let (U, ϕ) be a chart on M with local coordinate system (x^1, \ldots, x^n). We assume that the nullity of $\hat{F}_q (w, w)$ on (U, ϕ) is κ, that is

$$\text{nullity } \hat{F}_q (w, w) = \kappa$$

If (V, ψ) is another chart on M with local coordinate system (y^1, \ldots, y^n) such that $U \cap V \neq \emptyset$, then the components $\{w^{i_1 \ldots i_q}\}$ of w on V are connected with the components $\{w^{i_1 \ldots i_q}\}$ of w on U with the relations

$$w^{i_1 \ldots i_q} = \frac{\partial x^{i_1}}{\partial y^1} \ldots \frac{\partial x^{i_q}}{\partial y^q} w^{i_1 \ldots i_q}$$

The relations (33) are valid on $U \cap V$ and the local coordinates (x^1, \ldots, x^n) and (y^1, \ldots, y^n) are connected by the relations

$$x^1 = x^1 (y^1, \ldots, y^n) \ldots x^n = x^n (y^1, \ldots, y^n)$$

The quadratic form $\hat{F}_q (w, w)$ on the local coordinate system (y^1, \ldots, y^n) and by meaning of (33) and (34) takes the expression

$$\hat{F}_q (w', w') = P \cdot Q$$

where

$$P = w'^{i_1 \ldots i_q} \frac{\partial x^{i_1}}{\partial y^1} \ldots \frac{\partial x^{i_q}}{\partial y^q}, \quad Q = \frac{\partial x^{i_1}}{\partial y^{m_1}} \ldots \frac{\partial x^{i_q}}{\partial y^{m_q}} m_1 \ldots m_q$$

The change of the local coordinate system (x^1, \ldots, x^n) on the chart (U, ϕ) to the (y^1, \ldots, y^n) on (V, ψ) brings a change into the base
\[
\{dy^{i_1} \wedge dy^{i_2} \wedge \ldots \wedge dy^{i_q}\}
\]
of the vector space $\Lambda^q(U \cap V, \mathbb{R})$, which is determined by the relation
\[
dx^{i_1} \wedge dx^{i_2} \wedge \ldots \wedge dx^{i_q} = \frac{\partial x^{i_1}}{\partial y^{j_1}} \frac{\partial x^{i_2}}{\partial y^{j_2}} \ldots \frac{\partial x^{i_q}}{\partial y^{j_q}} dy^{j_1} \wedge dy^{j_2} \wedge \ldots \wedge dy^{j_q}
\]
This expression implies
\[
\text{rank} \left(\frac{\partial x^{i_1}}{\partial y^{j_1}} \frac{\partial x^{i_2}}{\partial y^{j_2}} \ldots \frac{\partial x^{i_q}}{\partial y^{j_q}} \right) = \binom{n}{q}
\]
From (35) by means of (39) implies that the nullity of the quadratic form $\tilde{F}_q(w, w)$ is constant and equal κ on the whole manifold.

3 Killing tensor fields

Let (M, g) be a compact Riemannian manifold of dimension n. Let T be an antisymmetric tensor field of type $(0,q)$. It is known that for T we can associate an exterior q-form w. This exterior q-form w is called Killing if it satisfies the relation
\[
(q + 1) \nabla w = dw
\]
The relation (40) implies that the tensor field ∇w is antisymmetric and the same time
\[
\delta w = 0
\]
The tensor field T is called Killing if the associated exterior q-form w is Killing.

Let (U, ϕ) be a chart on (M, g) with local coordinate system (x^1, \ldots, x^n). Let \{\(w_{i_1, \ldots, i_q}\)\} be the components of w on (U, ϕ). If w is a Killing, then \{\(w_{i_1, \ldots, i_q}\)\} satisfy the relations
\[
g^{ij}\nabla_j w_{i_1, \ldots, i_q} + \frac{1}{q} \sum_{i=1}^n \rho^i w_{i_1, \ldots, i_{i-1}, v_i, i_{i+1}, \ldots, i_q} + \frac{1}{q} \sum_{i<s} R_{i, i', i'', i'''} w_{i_1, \ldots, i_{i-1}, v_i, i_{i+1}, \ldots, i_{i'-1}, u, i_{i'+1}, \ldots, i_q} = 0
\]
(42) and
\[
g^{ij}\nabla_j w_{i_1, i_2, \ldots, i_q} = 0
\]
on the chart (U, ϕ).

If w is a Killing exterior q-form, the formula (11) takes the form
\[
\int_M \left[q |\nabla w|^2 - \frac{1}{(q-1)!} F_q(w, w) \right] dM
\]
Now, we can prove the following theorem
Theorem 4 Let \((M, g)\) be a compact orientable Riemannian manifold of dimension \(n\). We assume that the quadratic form \(\hat{\mathcal{F}}_q(w, w)\) is semi-negative on the whole manifold \(M\). We also assume that on one chart of \(M\) the nullity of \(\hat{\mathcal{F}}_q(w, w)\) is equal to the number of linearly independent parallel exterior forms of order \(q\), then the dimension of \(K_q(M, \mathbb{R})\) of Killing exterior \(q\)-forms on \(M\) is given by

\[
\dim K_q(M, \mathbb{R}) = \text{nullity} \ \hat{\mathcal{F}}_q(w, w)
\]

Proof 4 Let \(w\) be a Killing exterior form of order \(q\). Under the assumption, we have that the quadratic form \(\hat{\mathcal{F}}_q(w, w)\) is semi-definite on the whole manifold. From the formula (44) we obtain

\[
\nabla w = 0 \quad \hat{\mathcal{F}}_q(w, w) = 0
\]

It is known that if \(f \in D^q(M)\) and \(\Delta f \geq 0\) or \(\Delta f \leq 0\), then \(f = c\).

From the relation (8), the equation \(\Delta w = (q + 1) \delta \nabla w\) and the above remark we conclude that

\[
|w|^2 = c, \quad c = \text{constant}
\]

We assume that on the chart \((U, \phi)\) of the manifold \(M\) with local coordinate system \((x^1, ..., x^n)\) the nullity of the quadratic form \(\hat{\mathcal{F}}_q(w, w)\) is equal to \(\kappa\) and there are \(\kappa\) linearly independent different than zero exterior \(q\)-forms, \(w^{(\beta)}_{(i_1, i_2, ..., i_q)} \quad \beta = 1, 2, ..., \kappa\), which satisfy the relations (46). These exterior \(q\)-forms are parallel and the same time Killing.

Let \(w^{(\kappa+1)}\) be another parallel exterior \(q\)-form different than zero, which satisfies the relation

\[
\hat{\mathcal{F}}_q \left(w^{(\kappa+1)}, w^{(\kappa+1)} \right) = 0
\]

We shall prove that the exterior \(q\)-form \(w^{(\kappa+1)}\) can be written with a unique manner as a linear combination of \(w^{(\beta)}_{(i_1, i_2, ..., i_q)} \quad \beta = 1, 2, ..., \kappa\) with constant coefficients on the chart \((U, \phi)\).

We assume that

\[
w^{(\kappa+1)}_{(i_1, i_2, ..., i_q)} = \sum_{\beta=1}^{\kappa} \phi_{\beta} w^{(\beta)}_{(i_1, i_2, ..., i_q)}
\]

where \(\phi_{\beta}\) are functions of \((x^1, x^2, ..., x^n)\). If we apply the operator of covariant differentiation \(\nabla_j\) on the relation (49), we obtain for every \(j\) the system

\[
\sum_{\beta=1}^{\kappa} \partial_j \phi^{(\beta)}_{\beta (i_1, i_2, ..., i_q)} = 0
\]

which has a number \(\left(\begin{array}{c} n \\ q \end{array} \right)\) equations with \(\kappa\) unknown.
(51) \[\partial_j \phi_1, \partial_j \phi_2, \ldots, \partial_j \phi_\kappa \]

From our assumption we know that the degree of the matrix

(52) \[\left\{ u^{(\beta)}_{(i_1 i_2 \ldots i_\kappa)} \right\} \]

of the coefficient of the unknown is equal to \(\kappa \)

Therefore for every point of \(U \), there exists at least one determinant of order \(\kappa \) different than zero, the referred above matrix. The corresponding homogeneous system, which has as matrix of the coefficients the determinant which is different than zero. Hence, we obtain

(53) \[\partial_j \phi_\beta = 0 \quad (\beta = 1, 2, \ldots \kappa) \quad \text{for every} \quad j = 1, 2, \ldots n \]

which imply

(54) \[\phi_\beta = c_\beta \quad \beta = 1, 2, \ldots \kappa \]

Hence, we have

(55) \[u^{(\kappa+1)}_{(i_1 i_2 \ldots i_\kappa)} = \sum_{\beta=1}^{\kappa} c_\beta u^{(\beta)}_{(i_1 i_2 \ldots i_\kappa)} \]

On the other hand, by means of the formulas of changing the local coordinate system we easily conclude that the linear connection (55) with constant coefficients is valid on the whole manifold.

Finally, since every exterior \(q \)-form \(w^{(\beta)} \) satisfies the relation

(56) \[\left| w^{(\beta)} \right| = e'_\beta \quad (e'_\beta \neq 0) \]

and taking under consideration the theorem 3, we conclude that the exterior \(q \)-form \(w^{(\beta)} \quad \beta = 1, 2, \ldots \kappa \) are the only non-zero linearly independent Killing exterior \(q \)-form on the whole manifold \(\square \)

4 Harmonic \(q \)-forms

Let \(w \) be an exterior \(q \)-form. This is called harmonic if it satisfies the relations

(57) \[dw = 0, \quad \delta w = 0 \]

or equivalently

(58) \[\Delta w = 0 \]

Let \((U, \phi) \) be a chart on the manifold with local coordinate system \((x^1, \ldots x^n) \). Let \(\{w_{i_1 \ldots i_q}\} \) be the components of \(w \) on \(U \). If \(w \) is harmonic, then its components satisfy the conditions
\[g^{ij} \nabla_j \nabla_i w - \sum_{i=1}^q R^w_{i_1 \ldots i_{q-1} i} w_{i_1 \ldots i_{q-1} i} - \sum_{i < s} R^w_{i_s i} w_{i_1 \ldots i_{s-1} i+1 \ldots i} = 0 \]

(59)

The integral formula (14), if \(w \) is a harmonic form and by means of (59), takes the form

\[\int_M \left[|\nabla w|^2 + \frac{1}{(q-1)!} F^w (w, w) \right] dM = 0 \]

(60)

The following results are known. If \(F^w (w, w) \) is semi-definite on the whole manifold, then every harmonic form is parallel. If \(F^w (w, w) > 0 \), then there exists no harmonic form and the \(q \) Betti number is zero, then

\[b_q (M) = 0 \]

Now, we can prove the following theorem

Theorem 5 Let \((M, g)\) be an orientable and compact Riemannian manifold of dimension \(n\). We assume that the quadratic form \(\hat{F}^w (w, w) \) is semi-positive on the whole manifold \(M\) and at the same time the nullity of \(F^w (w, w) \) is equal with the number of linearity independent parallel exterior \(q\)-forms, then \(q \) Betti number of \(M\) is equal to the nullity of \(\hat{F}^w (w, w) \), that is \(b_q (M) = \text{nullity} \ (\hat{F}^w (w, w)) \).

Proof 5 From the assumption the \(\hat{F}^w (w, w) \) is semi-positive on the whole manifold \(M\), we conclude, by the meaning of the formula of (60), the relations

\[\hat{F}^w (w, w) = 0 \ , \ \nabla w = 0 \]

(62)

From the equation (10) using the known result if \(f \in D^0 (M) \) and \(\Delta f \geq 0 \) implies \(f = \text{constant} \) we conclude that \(|w|^2 = c \).

If we use the same method as in the theorem 3 we conclude that there are \(\kappa \) linearly independent parallel exterior \(q\)-forms, which are the only harmonic \(q\)-forms on the manifold. Therefore we have the equality \(\dim H^q (M, \mathbb{R}) = b_q = \kappa \).

5 Determination of the Betti numbers

Let \(M \) be an orientable and compact manifold. It is known that the \(q \) Betti number \(b_q \) is a topological invariant.

One problem of algebraic topology is to determine \(b_q (M) \), \(q = 1, 2, \ldots, n - 1 \), where \(n = \dim M \). In some cases we use Riemannian metrics on \(M \) to determine \(b_q \) \(q = 1, 2, \ldots, n - 1 \).

This method connects Algebraic Topology and Differential Geometry.

Let \(H (M) \) be the set of all Riemannian metrics on \(M \). It is known that \(H (M) \) is a Barach space of infinite dimension.

Let \(g \in H (M) \) be a Riemannian metric on \(M \). If \(w \in \Lambda^q (M) \) then we can form
\[\hat{F}_q(w, w) \]

If

\[\hat{F}_q(w, w) \geq 0 \quad \text{and} \quad \nabla w = 0 \]

then \(w \) is parallel and the same time harmonic. If there are \(\kappa \) exterior \(q \)-forms \(w_1, w_2, \ldots, w_\kappa \) such that they satisfy

\[\hat{F}_q(w_1, w_1) \geq 0 \quad \nabla w_1 = 0, \quad \hat{F}_q(w_2, w_2) \geq 0 \quad \nabla w_2 = 0, \ldots, \quad \hat{F}_q(w_\kappa, w_\kappa) \geq 0 \quad \nabla w_\kappa = 0 \]

then \(b_0 = \kappa \). From the above we have the proposition.

Proposition 6 Let \(M \) be an orientable and compact manifold of dimension \(n \). We assume that there are \(\kappa \) exterior \(q \)-forms \(w_1, w_2, \ldots, w_\kappa \) and Riemannian metrics \(g \) such that these forms are parallel with respect to the Levi-Civita connection \(\nabla \) and the same time \(\hat{F}_q(w_j, w_j) \geq 0, \quad j = 1, \ldots, \kappa \), then \(b_q = \kappa \).

The above proposition permits to determine the Betti numbers on an orientable and compact Riemannian manifold.

References

Departement of Mathematics and Physics
Aristotle University of Thessaloniki
Thessaloniki 54006, Greece