R-Separated Spaces
Liviu Popescu

Abstract

In this paper we have generalized the axioms of the separated spaces T_i, $(i = 0, \ldots, 4)$, by replacing the equality relation on a topological space X, Δ_X, by an arbitrary binary relation, R. Many theorems in general topology may be generalized in this way. It will be interesting to study spaces separated by functions, equivalence relations or order relations. In section 1 are presented axioms and characterizing theorems of R-separation, in section 2 are presented some properties of spaces separated by equivalence relations and in section 3 we will obtain some results concerning spaces separated by functions.

Mathematics Subject Classification: 54A05

Key words: topological space, normal, regular space, quotient space, equivalence relation.

1 Axioms and theorems of R separation

First let us make the following notations: (X, \mathcal{T}) is a topological space; $R \subseteq X \times X$ is a binary relation on X; \overline{R} is the dual of R (i.e. $xRy \iff (x, y) \notin R$); R^{-1} is the inverse of R (i.e. $xR^{-1}y \iff (y, x) \in R$); $xR_A \iff xRy$, $(\forall) y \in A$: $xR_A \iff xRy$ $(\forall) y \in A$; $ARB \iff xRy$, $(\forall) x \in A$, $(\forall) y \in B$: $ARB \iff xRy$, $(\forall) x \in A$, $(\forall) y \in B$; $R(x) = \{y \mid xRy\}$ and $R^{-1}(x) = \{y \mid yRx\}$; $R(A) = \{y \mid (\exists) x \in A \text{ so that } xRy\}$; N_x is the neighborhood filter of $x \in X$; For any $A \subseteq X$ we note by $V_A = \{B \mid (\exists) D \in \mathcal{T} \text{ so that } A \subseteq D \subseteq B\}$ and we note $CA = X \setminus A$.

We will replace in the classical definitions of the separated spaces $x \neq y$ by $xRy; x \notin A$ by xR_A or $A\overline{R}x$ and $A \cap B$ by $A\overline{RB}$. Replacing in the following considerations the relation R by Δ_X (i.e. $xRy \iff x = y$), we shall find the classical case of T_i spaces ($i = 0, 4$).

Definition 1. X is T^R_0 - space iff $(\forall) x, y \in X$ with xRy, $(\exists) V_x \in V_x$ so that $V_x \overline{R}y$ or $(\exists) V_y \in V_y$ so that $x\overline{R}V_y$.

Definition 2. X is T^R_1 - space iff $(\forall) x, y \in X$ with xRy, $(\exists) V_x \in V_x$ and $(\exists) V_y \in V_y$ so that $x\overline{R}V_y$ and $V_x \overline{R}y$.

Definition 3. X is T^R_2 - space iff $(\forall) x, y \in X$ with xRy, $(\exists) V_x \in V_x$, $(\exists) V_y \in V_y$ so that $V_x \overline{R}V_y$.

©Balkan Society of Geometers, Geometry Balkan Press
Remark 1. $T^R_2 \subset T^R_1 \subset T^R_0$.

Remark 2. If in the definitions 1, 2, 3 we take $x R y$ iff $x = y$, then they become those in the classical case.

Theorem 4. X is T^R_0 - space iff for each $x, y \in X$ we have: $y \in \overline{R(x)}$ and $x \in R^{-1}(y)$ if $x R y$, where by \overline{A} we note the closure of the subset A of X.

Proof. $V_x \cap V_y$ or $x R y \iff V_x \cap R^{-1}(y) = \emptyset$ or $R(x) \cap V_y = \emptyset \iff y \notin \overline{R(x)}$ or $y \notin \overline{R} \iff x \notin \overline{R^{-1}(y)}$ or $y \notin \overline{R(x)}$ for $x R y \iff x \notin \overline{R^{-1}(y)}$ and $y \notin \overline{R(x)}$, then $x R y$. □

Theorem 5. X is T^R_1 - space iff $R(x)$ and $R^{-1}(x)$ are closed subsets, for every $x \in X$.

Proof. "⇒". Suppose that X is T^R_1 - space and $x \notin \overline{R(x)}$. Then exists $V_x \in \mathcal{V}_x$ an $V_y \in \mathcal{V}_y$ so that $x \notin \overline{R(x)}$ and $x \notin \overline{R^{-1}(x)}$ and $x \notin \overline{R^{-1}(y)}$ and $x \notin \overline{R(x)}$.

"⇒". (a) If $R^{-1}(y)$ is a closed subset of X, then for each $x \notin \overline{R(x)}$, we have $x \notin \overline{R^{-1}(y)}$.

From here: (1) $V_x \in \mathcal{V}_x$ with $V_x \cap R^{-1}(y) = \emptyset \Rightarrow V_x \cap \overline{R(x)}$. (b) $V_y \in \mathcal{V}_y$ with $x \notin \overline{R(x)}$ just like in (a). □

Theorem 6. X is T^R_2 - space iff R is a closed subset of $X \times X$.

Proof. "⇒". Suppose X is T^R_2 - space and $y \in \bigcap_{V \in \mathcal{V}_y} \overline{R(V)} = R(x)$ for every $x \in X$ we have $y \notin \overline{R(V)} = R(x)$ and for every $y \in X$ we have $y \notin \overline{R(V)} = R(x)$.

Proof. "⇒". Suppose $x \notin \overline{R(V)} = R(x)$ and $y \in \bigcap_{V \in \mathcal{V}_y} \overline{R(V)} = y \in \overline{R(V)}$, $(\forall) V \in \mathcal{V}_y$. If $y \notin R(x) \Rightarrow x \notin \overline{R(V)} \Rightarrow (\exists) \mathcal{V}_x \in \mathcal{V}_x$ and $(\exists) \mathcal{V}_y \in \mathcal{V}_y$, so that $V_x \cap \overline{R(V)} \Rightarrow R(V(x)) \cap V_y = \emptyset \Rightarrow y \notin \overline{R(V)}$, contradiction, so $y \notin R(x)$ and from here $\bigcap_{V \in \mathcal{V}_y} \overline{R(V)} \cap R(x) \Rightarrow R(x)$.

In the same way we infer $\bigcap_{V \in \mathcal{V}_y} \overline{R(V)} = R(x)$.

"⇒". Suppose $x \notin \overline{R(V)} \Rightarrow y \notin \overline{R(x)} \Rightarrow y \notin \bigcap_{V \in \mathcal{V}_y} \overline{R(V)} \Rightarrow (\exists) \mathcal{V}_x \in \mathcal{V}_x$ so that $y \notin \overline{R(V)} = (\exists) \mathcal{V}_y \in \mathcal{V}_y$ so that $V_y \cap \overline{R(V)} = \emptyset \Rightarrow V_y \cap \overline{R(V)} \Rightarrow X$ is T^R_2. □

Remark 3. It is enough to replace in Theorem 7, \mathcal{V}_x with a neighborhood basis of x.

Definition 8. (a) X is a R_1 - regular space iff for each F, closed subset so that $F \overline{Ry}$, there exists $V_F \in \mathcal{V}_F$ (neighborhood of F) and there exists $V_y \in \mathcal{V}_y$ so that $V_F \cap \overline{R(y)}$. (b) X is a R_2 - regular space iff for each F, closed subset with $x \overline{RF}$, there exists $V_F \in \mathcal{V}_F$ and there exists $V_x \in \mathcal{V}_x$ so that $x \overline{RF}$. (c) X is a R - regular space iff X is a R_1 and R_2 space.

Remark 4. If R is a symmetric relation (i.e. $R \subset R^{-1}$) then (a) ⇔ (b) ⇔ (c).

Remark 5. If in this definition we take $x \overline{Ry}$ if $x = y$ then they become those in the classical case.
Theorem 9. (a) X is a R_0 - regular space iff for each $y \in X$ and $U \in \mathcal{V}_{R^{-1}(y)}$ there exists $V \in \mathcal{V}_y$ so that $R^{-1}(V) \subset U$.

(b) X is a R_0 - regular space iff for each $x \in X$ and $U \in \mathcal{V}_{R(x)}$ there exists $V \in \mathcal{V}_x$ so that $R(V) \subset U$.

(c) X is a R - regular space iff (a) and (b) are both true.

Proof. (a) "\Rightarrow". Suppose X is R_0 regular space. Let $y \in X$ be and $U \in \mathcal{V}_{R^{-1}(y)}$. Suppose that U is an open set. Then $F = CU$ is a closed set $\Rightarrow F \cap R^{-1}(y) = 0 \Rightarrow F \cap y \Rightarrow$ there exists $V_F \in \mathcal{V}_F$ so that $V_F \cap Y = R^{-1}(V_F) = 0$. Without loss the generality we can suppose V_F open set $\Rightarrow CF$ is a closed set $\Rightarrow R^{-1}(V_F) \subset CV_F = CV_F$. But $F \subset V_F \Rightarrow CV_F \subset CF = U \Rightarrow R^{-1}(V_F) \subset U$.

"\Leftarrow". Let F be a closed set and $y \in X$ so that $F \cap R^{-1}(y) = 0 \Rightarrow R^{-1}(V_F) \subset CF; CF = U$ is an open set $\Rightarrow U \in \mathcal{V}_{R^{-1}(y)} \Rightarrow$ there exists $V \in \mathcal{V}_y$ so that $R^{-1}(V_F) \subset U \Rightarrow CR^{-1}(V_F) \subset CR^{-1}(V_F) \subset V_F \Rightarrow V_F \cap R^{-1}(y) = 0 \Rightarrow V_F \subset R^{-1}(V_F)$.

(b) In the same way as (a).

(c) Is the consequence of (a) and (b). \square

Definition 10. X is a R - normal space iff for each F_1, F_2 closed sets so that $F_1 \subset F_2$, there exists:

$$V_1 \in \mathcal{V}_{F_1}, V_2 \in \mathcal{V}_{F_2} \Rightarrow V_1 \subset F_2.$$

Theorem 11. X is a R - normal space iff for each F closed set and $U \in \mathcal{V}_{R(F)}$, there exists $V \in \mathcal{V}_F$ so that (a) $R(V) \subset U$ and (b) for each $U \in \mathcal{V}_{R^{-1}(y)}$, there exists $V \in \mathcal{V}_y$ so that $R^{-1}(V) \subset U$.

Proof. "\Rightarrow". Suppose X is a R - normal space. Let F be a closed set and $U \in \mathcal{V}_{R(F)} \Rightarrow R(F) \subset U$. Suppose U is a open set $\Rightarrow F_1 = CU$ is a closed set. As $CR(F) \cap F_1 \Rightarrow R(F) \cap F_1 = \emptyset \Rightarrow F \subset F_1 \Rightarrow$ exists $V_F \in \mathcal{V}_F$ and $V_1 \in \mathcal{V}_{F_1}$ so that $V_F \subset V_1$. But $V_1 \cap F_1 \Rightarrow CV_1 \subset CF_1$. Suppose V_1 is an open set $\Rightarrow CV_1 \subset CV_1$. But $V_F \cap V_1 \Rightarrow R(V_F) \subset CV_1 \Rightarrow R(V_F) \subset CV_1 \subset CF_1 = U$. So $R(V_F) \subset U$. In the same way for each $U \in \mathcal{V}_{R^{-1}(y)}$, there exists $V \in \mathcal{V}_y$ so that $R^{-1}(V) \subset U$.

"\Leftarrow". Let F_1, F_2 be closed sets so that $F_1 \subset F_2$, $F_1 \cap F_2 = \emptyset \Rightarrow R(F_1) \cap F_1 = CF_1$; $CF_1 = U$ is an open set $\Rightarrow U \in \mathcal{V}_{R(F_1)} \Rightarrow$ there exists $V_1 \in \mathcal{V}_{F_1}$ so that $R(V_1) \subset U \Rightarrow CR(V_1) = V_2$, is an open set and $V_2 \subset F_2 \Rightarrow V_2 \in \mathcal{V}_{F_2}$. Observe that $CV_2 = R(V_1) \subset CR(V_1) \Rightarrow R(V_1) \cap V_2 = \emptyset \Rightarrow V_1 \subset F_2$.

Remark 6. Definition 5 \Leftrightarrow condition (a) \Leftrightarrow condition (b), as we can see from the proof. The R - separated spaces can be characterized by using sequences. First we define the T_3^R and T_4^R spaces.

Definition 12. (a) X is T_3^R space iff X is a T_1 space and R - regular space.

(b) X is T_4^R space iff X is a T_1 space and an R - normal space.

Theorem 13. $T_4^R \subset T_3^R \subset T_2^R \subset T_1^R \subset T_0^R$.

Proof. Observe that if X is T_1 space then $\{x\} = \{x\}$ for each $x \in X$; using this condition results the first and the second inclusion of theorem 7. \square

Remark 7. A naturally condition for T_3^R and T_4^R spaces would to be T_1^R space, but it is not good enough to Theorem 7.
Theorem 14. X is T_0^R space iff for the generalized sequences $(x_\alpha)_{\alpha \in I}$ and $(y_\beta)_{\beta \in J}$ we have

$$
\begin{align*}
& x_\alpha \to x \\
& y_\beta \to y \\
& x_\alpha R y \\
& x R y_\beta \\
& x R y_\beta
\end{align*}
\Rightarrow
\begin{align*}
x R y.
\end{align*}
$$

Proof. We will use Theorem 1.

"\Rightarrow". Suppose $y \in \overline{R(x)}$ and $x \in \overline{R^{-1}(y)} \Rightarrow x R y$. See that:

$$
\begin{align*}
x_\alpha \to x \\
x_\alpha R y \Rightarrow x \in \overline{R^{-1}(y)}
\end{align*}
\Rightarrow
\begin{align*}
x \in \overline{R^{-1}(y)}.
\end{align*}
$$

Also:

$$
\begin{align*}
y_\beta \to y \\
x R y_\beta \Rightarrow y \in \overline{R(x)}
\end{align*}
\Rightarrow
\begin{align*}
y \in \overline{R(x)}.
\end{align*}
$$

By using Theorem 4 we have $x R y$.

"\Leftarrow". $y \in \overline{R(x)} \Rightarrow$ there exists $(y_\beta)_{\beta \in J}$ so that $y_\beta \to y$ and $y_\beta \in \overline{R(x)} \Rightarrow x R y_\beta$, $x \in \overline{R^{-1}(y)} \Rightarrow$ there exists $(x_\alpha)_{\alpha \in I}$ so that $x_\alpha \to x$ and $x \in \overline{R^{-1}(y)} \Rightarrow x_\alpha R y$. From here it follows $x R y$. \Box

Theorem 15. X is T_1^R space iff for the generalized sequences $(x_\alpha)_{\alpha \in I}$ and $(y_\beta)_{\beta \in J}$ we have

$$
\begin{align*}
x_\alpha \to x \\
x_\alpha R y
\end{align*}
\Rightarrow
\begin{align*}
x R y \
\end{align*}
$$

Proof. We use Theorem 5.

"\Rightarrow". $x_\alpha \to x$, $x_\alpha R y \Rightarrow x_\alpha \in \overline{R^{-1}(y)} = \overline{R^{-1}(y)} \Rightarrow x \in \overline{R^{-1}(y)} \Rightarrow x R y$, $y_\beta \to y$, $x R y_\beta \Rightarrow y_\beta \in \overline{R(x)} = \overline{R(x)} \Rightarrow y \in \overline{R(x)} \Rightarrow x R y$.

"\Leftarrow". $y \in \overline{R(x)} \Rightarrow$ there exists $(y_\beta)_{\beta \in J}$ a generalized sequence so that $y_\beta \in \overline{R(x)}$ and $y_\beta \to y$. Observe that $x R y_\beta \Rightarrow x R y \Rightarrow y \in \overline{R(x)} \Rightarrow R(x) = \overline{R(x)}$, $x \in \overline{R^{-1}(y)} \Rightarrow$ there exists $(x_\alpha)_{\alpha \in I}$ a generalized sequence so that $x_\alpha \in \overline{R^{-1}(y)}$ and $x_\alpha \to x$. Observe that $x_\alpha R y \Rightarrow x R y \Rightarrow x \in \overline{R^{-1}(y)} \Rightarrow x R y$. \Box

Theorem 16. X is T_2^R space iff for each generalized sequences $(x_\alpha)_{\alpha \in I}$ and $(y_\alpha)_{\alpha \in I}$ so that $x_\alpha R y_\alpha$, $x_\alpha \to x$ and $y_\alpha \to y$, we have $x R y$.

Proof. We use Theorem 6.

X is T_2^R space iff $R \subseteq X \times X$ is a closed set \iff for each $(x_\alpha, y_\alpha) \in R$ so that $(x_\alpha, y_\alpha) \to (x, y)$ we have $(x, y) \in R \iff$ for each $x_\alpha \to x; y_\alpha \to y$, $x_\alpha R y_\alpha$ it follows $x R y$. \Box

Example 17. If "\leq" is an order relation on X and if X is a T_1^R space then

$x_\alpha \leq y; x_\alpha \to x \Rightarrow x \leq y; x \leq y_\beta; y_\beta \to y \Rightarrow x \leq y$.

If X is a T_2^R space, then from $x_\alpha \leq y_\alpha; x_\alpha \to x; y_\alpha \to y$ results $x \leq y$.

Example 18. Let "$<$" be an order relation on R: $x < y$ iff $y - x \in \mathbb{N}$. R is $T_1^<$ space for $i \in \{0, 1, 2\}$ but it is not $T_i^<$ space for $i \in \{3, 4\}$.

Proof. (a) It is obvious that "$<$" is an order relation on R and more: $< (x) = x + \mathbb{N}$, $<^{-1} (y) = y - \mathbb{N}$, for each $x, y \in \mathbb{R}$. $x_n < y_n \Rightarrow y_n - x_n \in \mathbb{N}$, where $(x_n)_{n \in \mathbb{N}}$ and $(y_n)_{n \in \mathbb{N}}$ are real sequences. $x_n \to x, y_n \to y \Rightarrow y_n - x_n \to y - x$. From here exists $n_0 \in \mathbb{N}$ so that $y_n - x_n \in (y - x - 1/2, y - x + 1/2)$ for each $n \geq n_0$. Because $y_n - x_n \in \mathbb{N}$ it follows $y_n - x_n = m \in \mathbb{N}$, so $y_n - x_n$ is constant for...
\[n \geq n_0 \Rightarrow y_n - x_n = y - x \in \mathbb{N} \Rightarrow x < y. \] Using Theorem 16 results \(R \) is \(T^*_\varepsilon \) space, so \(T^*_\varepsilon \) space for every \(i \in \{0, 1, 2\}. \)

(b) \(R \) is not \(\prec \) regular space. From Theorem 9 we have that for \(x = 0 \), if \(V = \bigcup_{n=0}^{\infty} \left(n - \frac{1}{2^n}, n + \frac{1}{2^n} \right) \in V_{\prec(0)} \), because \(\prec (0) = \mathbb{N} \). \(R \) is \(\prec \) regular space \(\Rightarrow \) exists \(U \in V_0 \) so that \(\prec (U) \subset V \). Let \(\varepsilon > 0 \) be so that \(U_0 = (-\varepsilon, \varepsilon) \subset U \). We have \(\prec (U_0) \subset \prec (U) \subset \prec (U) \subset V \) and then \(U_0 + \mathbb{N} \subset V \). So \(\bigcup_{n=0}^{\infty} \left(n - \frac{1}{2^n}, n + \frac{1}{2^n} \right) \). It follows \(0 < \varepsilon \leq \frac{1}{2^n} \) for each \(n \in b \Rightarrow \varepsilon = 0 \), contradiction. Therefore \(R \) is not \(T^*_\varepsilon \) space for \(i \in \{3, 4\} \). \(\square \)

2 \ Spaces separated by equivalence relations

In this section we will consider the case of an equivalence relation \(R = \rho \). First we define a notion of continuity of a binary relation.

Definition 19. (a) A binary relation \(\rho \) on a topological space \((X, \mathcal{T}) \) is continuous iff for every \(D \in \mathcal{T} \) an open set, \(\rho^{-1}(D) \in \mathcal{T} \) is an open set.

(b) \(\rho \) is an open relation iff for each \(D \in \mathcal{T}, \rho(D) \in \mathcal{T} \) is an open set.

Remark 8. If \(\rho = \rho \) is an equivalence relation, then \(\rho = \rho^{-1} \) so (a) \(\iff \) (b).

Theorem 20. Let \(\rho \) be an equivalence relation on \(X \) and \((\hat{X}, \hat{\mathcal{T}})\) be the quotient space. If \(\hat{X} \) is \(T_i \) space then \(X \) is \(T^\rho_i \) space for each \(i \in \{0, 4\} \).

Proof. Let \(\hat{x} = p(x) \) be the equivalence class of each \(x \in X \), and \(p : X \to \hat{X}, p(x) = \hat{x} \) be the canonical projection. Suppose \(\hat{X} \) is \(T_2 \) space and let \(x, y \in X \) be so that \(x \sim y \Rightarrow \hat{x} \neq \hat{y} \), more, \(p(x) \cap p(y) = \emptyset \). There exists \(V_x \in V_x \) and \(V_y \in V_y \) neighborhoods of \(\hat{x}, \hat{y} \) so that \(V_x \cap V_y = \emptyset \).

If \(V_x = p^{-1}(V_x) \) and \(V_y = p^{-1}(V_y) \), then, as \(p \) is continuous we have \(V_x \in V_x \) and \(V_y \in V_y \) and more because \(V_x \cap V_y = \emptyset \Rightarrow V_x \cap V_y = \emptyset \Rightarrow X \) is \(T^\rho_2 \) space. The cases of \(i \in \{0, 1, 2, 3, 4\} \) can be proved analogously. \(\square \)

This theorem has a converse given by:

Theorem 21. If \(\rho \) is an equivalence relation on \(X \) and if \(\rho \) is continuous then \(X \) is \(T^\rho_i \) space \(\Rightarrow \hat{X} \) is \(T_i \) space, for each \(i = \{0, 4\} \).

Proof. We will prove this result only in the case of \(i = 2 \). Suppose \(X \) is \(T^\rho_2 \) space. First, observe that \(p \) is an open map \(\iff \rho \) is an open relation. Let be \(\hat{x}, \hat{y} \in \hat{X} \) so that \(\hat{x} \neq \hat{y} \Rightarrow x \not\sim y \Rightarrow \) there exists \(V_x \in V_x \) and \(V_y \in V_y \) so that \(V_x \not\supseteq V_y \). Because \(p \) is open map we have that \(V_x = p(V_x) \) and \(V_y = p(V_y) \) are neighborhoods of \(\hat{x} \) and \(\hat{y} \) and more \(V_x \cap V_y = \emptyset \Rightarrow \hat{x} \neq \hat{y} \Rightarrow \hat{X} \) is \(T_2 \) space. \(\square \)

Example 22. 1) Let \(X = \mathbb{R} \) be with usualy topology and \(\rho \) the equivalence on \(\mathbb{R} \) defined by: \(x \not\sim y \iff x - y \in \mathbb{Q} \). Observe that for each \(D \) open set, \(\rho(D) = D + \mathbb{Q} = \mathbb{R} \), so \(\rho \) is a continuous relation. From here we can see that \(R \) is not \(T^\rho_2 \) space because for each \(x \not\sim y \), \(V_x \in V_x, V_y \in V_y \) results \(\rho(V_x) = \rho(V_y) = \mathbb{R} \) so \(y \not\in \rho(V_y) \) and \(x \not\in \rho(V_x) \).

If \(\mathbb{R} = \mathbb{R}/\rho \) would be \(T_0 \) space, then \(\mathbb{R} \) would be \(T^\rho_2 \) space, so \(\mathbb{R}/\rho \) is not \(T_2 \) space, \(i = 0, 4 \).

2) Some surfaces can be obtained as quotient spaces by identifying points of the border of a plane quadrat \(P \subset \mathbb{R}^2 \). For example the 2-sphere, \(S^2 \). Construction of
3 Function relations

Let \(f : X \to X \) be a function and \((X, \mathcal{T})\) be a topological space. We will establish some properties of \(T^i \) spaces, \(i = 0, 1, \ldots \).

Theorem 23. If \(X \) is \(T_0 \) space and \(f \) is continuous, then \(X \) is \(T^i_0 \) space.

Proof. Observe that if \(f \) is continuous then \(f(A) \subset f(A) \) and \(f^{-1}(B) \subset f^{-1}(B) \) for each \(A, B \) subsets of \(X \). \(X \) is \(T_0 \) space iff:

\[
\begin{align*}
&\text{(1)} & \quad x \in \overline{\{ y \}} \text{ and } y \in \overline{\{ x \}} \Rightarrow x = y.
\end{align*}
\]

We shall prove:

\[
\begin{align*}
&\text{(2)} & \quad y \in \{ f(x) \} \text{ and } x \in \{ f^{-1}(y) \} \Rightarrow f(x) = y.
\end{align*}
\]

\(x \in \{ f^{-1}(y) \} \) and \(\{ f^{-1}(y) \} \subset f^{-1}(\overline{\{ y \}}) \Rightarrow x \in f^{-1}(\overline{\{ y \}}) \), because \(f \) is continuous. From here \(f(x) \in \overline{\{ y \}} \) and \(f(x) \in \{ f^{-1}(y) \} \) \(\Rightarrow y = f(x) \), so \(X \) is \(T^i_0 \) space (2). \(\Box \)

Theorem 24. If \(X \) is \(T^i_0 \) space and if \(f \) is bijection, having the inverse \(f^{-1} \) continuous, then \(X \) is \(T^i_0 \) space.

Proof. Let \(x, y \in X \) be. We shall prove that: \(x \in \overline{\{ y \}} \text{ and } y \in \overline{\{ x \}} \Rightarrow x = y \), i.e. \(X \) is \(T^i_0 \) space. Since \(f \) is bijection \(\Rightarrow \) exists \(z \in X \) so that \(y = f(z) \). Suppose that \(x \in \{ f(z) \} \) and \(f(z) \in \{ x \} \Leftrightarrow x \in \overline{\{ y \}} \) and \(y \in \overline{\{ x \}} \). Because \(f^{-1} \) is continuous we have: \(z \in f^{-1}(\overline{\{ x \}}) \subset f^{-1}(\overline{\{ y \}}) \) and so \(z \in \{ f^{-1}(x) \} \). From here \(x \in \{ f(z) \} \) and \(x \in \overline{\{ f^{-1}(x) \}} \Rightarrow x = f(z) \), because \(X \) is \(T^i_0 \) space. So we have \(x = f(z) = y \), and then \(X \) is \(T^0 \) space. \(\Box \)

Theorem 25. If \(X \) is \(T^i_1 \) space and \(f \) is continuous, then \(X \) is \(T^i_1 \) space.

Proof. Observe that \(X \) is \(T^i_1 \) space iff \(\{ f(x) \} \) and \(\{ f^{-1}(y) \} \) are closed sets, for each \(x, y \in X \). \(X \) is \(T^i_1 \) space \(\Rightarrow \) \(\{ f(x) \} \) is closed set (1). Because \(\{ y \} \) is a closed set and \(f \) is continuous, we have that \(f^{-1}(y) \) is a closed set (2). From (1) and (2) we have that \(X \) is \(T^i_1 \) space. \(\Box \)

Theorem 26. If \(X \) is \(T^i_1 \) space and \(f \) is onto, then \(X \) is \(T^i_1 \) space.

Proof. \(X \) is \(T^i_1 \) space \(\Rightarrow \) \(\{ f(x) \} \) is a closed set for each \(x \in X \). Because for each \(y \in X \), exists \(x \in X \) so that \(y = f(x) \), we have that \(\{ y \} = \{ f(x) \} \) is a closed set so \(X \) is \(T^i_1 \) space. \(\Box \)

Theorem 27. If \(X \) is \(T^i_2 \) space and \(f \) is continuous, then \(X \) is \(T^i_2 \) space.

Proof. Note \(G_f \) the graph of \(f \). We shall prove that \(CG_f \) is an open subset of \(X \times X \). Let be \((x, y) \in CG_f \). Then \(f(x) \neq y \). Because \(X \) is \(T^i_2 \) space, there exists \(V \in \mathcal{V}_y \). We note by \(\text{Int} \) \(P \) the interior of \(P \) and by \(bP \) the border of \(P \). We consider \(P \) as a topological subspace of \(\mathbb{R}^2 \). See that if \(D \) is an open set of \(P \), then \(D \cup bP \) is also an open set of \(P \). We define on \(P \) the relation \(\rho : xPy \Leftrightarrow x = y \) or \(x, y \in bP \). We see that \(\rho \) is a continuous equivalence relation, since if \(D \) is an open subset of \(P \):

a) If \(D \cap bP = \emptyset \) then \(\rho(D) = D \) is an open subset of \(P \).

b) If \(D \cap bP \neq \emptyset \) then \(\rho(D) = D \cup bP \) is also an open subset of \(P \).

We define \(S^2 = P/\rho \) the quotient space of \(P \). It is not difficult to see that \(S^2 \) is homeomorphic with any sphere of \(\mathbb{R}^3 \). \(P \) is a \(T^2 \) space, using Theorem 16 of Section 1.
and $V_1 \in \mathcal{V}_{f(x)}$ so that $V \cap V_1 = \emptyset$. But f is continuous and from here! there exists $U \in \mathcal{V}_x$ so that $f(U) \subset V \implies f(U) \cap V = \emptyset \implies U \times V \subset CG_f \implies CG_f$ is a open set $\implies G_f$ is a closed set $\implies X$ is T^f_2 (see Theorem 4 Section 1).

Remark 9. Theorem 27 states that each continuous function on a T_2 space has a closed graphical.

Theorem 28. If X is T^f_2 space and f is bijection having the inverse f^{-1} continuous, then X is T^f_2 space.

Proof. Let $y \in X$ be \Rightarrow there exists $x \in X$ so that $y = f(x) \implies x = f^{-1}(y)$. Because f^{-1} is continuous we have: For each $U \in \mathcal{V}_x$ there exists $V \in \mathcal{V}_y$ so that $f^{-1}(V) \subset U \implies V \subset f(U) \Rightarrow \overline{V} \subset \overline{f(U)}$. From here we infer

$$y \in \bigcap_{V \in \mathcal{V}_y} \overline{V} = \bigcap_{V \in \mathcal{V}_{f(x)}} \overline{V} \subset \bigcap_{V \in \mathcal{V}_y} \overline{f(U)} = \{ f(x) \} = \{ y \},$$

because X is T^f_2 (Theorem 4 Section 1). So we have: $\bigcap_{V \in \mathcal{V}_y} \overline{V} = \{ y \}$ for each $y \in X$, and then X is T^f_2 space.

Theorem 29. If X is T^f_2 space and compact, then f is continuous.

Proof. X is T^f_2 space \Rightarrow $\bigcap_{U \in \mathcal{V}_x} \overline{f(U)} = \{ f(x) \}$ for each $x \in X$. Hence $\bigcup_{U \in \mathcal{V}_x} \overline{f(U)} = X \setminus \{ (f(x)) \}$, for an arbitrary point x of X. Let $V \in \mathcal{V}_{f(x)}$; then $X = \bigcup_{U \in \mathcal{V}_x} \overline{f(U)} \cup V$. Because X is a compact space there exist $U_1, U_2, ..., U_n \in \mathcal{V}_x$ such that

$$X = \overline{f(U_1)} \cup \overline{f(U_2)} \cup ... \cup \overline{f(U_n)} \cup V = C \left[\overline{f(U_1)} \cup \overline{f(U_2)} \cup ..., \cup \overline{f(U_n)} \right] \cup V.$$

Let $U \in \mathcal{V}_x$ be so that $U \subset \bigcap_{i=1}^{n} U_i$. We have $f(U) \subset \bigcap_{i=1}^{n} f(U_i)$. Hence

$$C \overline{f(U)} \supset C \left[\bigcap_{i=1}^{n} \overline{f(U_i)} \right] \implies \overline{C \overline{f(U)}} \cup V = X \Rightarrow C \overline{f(U)} \cap CV = \emptyset \Rightarrow f(U) \subset V.$$

We have proved that f is continuous in x. So f is continuous on X.

Remark 10. This theorem is in fact an alternative of the principle of the closed graphical.

Theorem 30. If X is f_r-regular space, then f is continuous.

Proof. It is a consequence of Theorem 9 Section 1.

Theorem 31. If X is f-regular space and f is bijection, then f is homeomorphism.

Proof. It is a consequence of Theorem 9 Section 1.

Theorem 32. If X is a regular space and f is continuous, then X is f_r-regular space.

Proof. Let $x \in X$ be and $V \in \mathcal{V}_{f(x)}$ be \Rightarrow there exists $V_1 = \overline{V_1} \in \mathcal{V}_{f(x)}$ so that $V_1 \subset V$, because X is regular space. As f is continuous there exists $U \in \mathcal{V}_x$ so that

$$f(U) \subset V_1 \Rightarrow \overline{f(U)} \subset \overline{V_1} \Rightarrow \overline{f(U)} \subset V.$$

Using now Theorem 9 Section 1, it follows that X is f_r-regular space.
Theorem 33. If X is regular space and f is homeomorphism, then X is f regular space.

Proof. It is a consequence of Theorem 9 Section 1. \hfill \Box

Theorem 34. If X is T_1' space (i.e. f-normal and T_1) then f is continuous. If f is bijection, then it is a homeomorphism.

Proof. It is a consequence of Theorem 11 Section 1, if we remark that X is T_1 space $\Rightarrow\{x\}$ is a closed set for each $x \in X$. \hfill \Box

Theorem 35. (a) If f is continuous and X is regular space, then X is f_r-regular.

(b) If f is homeomorphism and X is regular space, then X is f-regular.

Proof. (a) Let $x \in X$ be; for each $V \in \mathcal{V}_f(x)$, there exists $U \in \mathcal{V}_x$ so that $f(U) \subset V$. Suppose $V = \overline{V}$, because X is regular space. From here $\overline{f(U)} \subset \overline{V}$; because $V = \overline{V} \Rightarrow X$ is f_r-regular space.

(b) It is a consequence of (a), observing that f^{-1} is continuous. \hfill \Box

Theorem 36. If f is homeomorphism and X is normal space, then X is f-normal.

Proof. Let F be a closed subset of $X \Rightarrow f(F)$ is a closed set, because f is homeomorphism. If $V \in \mathcal{V}_f(F)$ then $V \in \mathcal{V}_f(x)$ for each $x \in F$. But f is continuous \Rightarrow there exists $U_x \in \mathcal{V}_x$ so that $f(U_x) \subset V$. Let $U = \bigcup_{x \in F} U_x$ be; notice U is neighborhood of F it follows $f(U) = \bigcup_{x \in F} f(U_x) \subset V$. Because X is normal space, suppose $V = \overline{V} \Rightarrow \overline{f(U)} \subset V$ (1).

In the same way replacing f with f^{-1} that is continuous too, we will have: for each F a closed subset of X, and for each $U \in \mathcal{V}_{f^{-1}}(x)$ there exists $V \in \mathcal{V}_F$ so that $f^{-1}(V) \subset U$, supposing $U = \overline{U}$ (2) From (1), and (2), using Theorem 11 Section 1 we have that X is f-normal space. \hfill \Box

References

University of Oradea
Department of Mathematics
Oradea, Str. Armatei Romane, nr. 5
Jud. Bihor, 3700, ROMANIA