Variational Solutions of Stationary Hamilton-Jacobi Equations

Vasile Iftode

Abstract

This work deals with the stationary Hamilton-Jacobi equation \(F(B^* \psi_y) = \langle Ay, \psi_y \rangle = g \) in the class of convex continuous functions \(\psi \) on a real Hilbert space \(H \). After obtaining an asymptotic result, the existence, the uniqueness and a Galerkin approximation of the solution to the above equation are established.

Mathematics Subject Classification: 49L20, 49A15
Key words: Hamilton-Jacobi equations, variational solutions

Let \(H \) and \(U \) be two real Hilbert spaces with the scalar products \(\langle \cdot, \cdot \rangle \) and \(< \cdot, \cdot > \), respectively. The norms of \(H \) and \(U \) will be denoted by \(| \cdot | \) and \(| \cdot |_U \), respectively. We define the function \(\psi^\infty : H \to \mathbb{R} \)

\[
\psi^\infty(y) = \inf \left\{ \int_0^\infty (g(x(t)) + h(u(t)))dt; \ x' = Ax + Bu, \ x(0) = y; \ u \in L^1(\mathbb{R}^+; U) \right\}
\]

in the following hypotheses:

(i) \(A \) is the infinitesimal generator of a \(C_0 \)-semigroup of contractions on \(H \)
 i.e., \(A \) is \(m \)-dissipative on \(H \);
 \(B \) is a linear continuous operator from \(U \) to \(H \).

(ii) The function \(g : H \to \mathbb{R} \) belongs to \(K \cap C_{lip}^1(H) \) and satisfies the following two conditions:

\[
g(y_n) \to 0 \text{ for some sequences } \{y_n\} \text{ then } y_n \to 0;
\]

\[
g(e^{-(\lambda - A)t}y) \in L^1(\mathbb{R}^+) \text{ for } \lambda > 0 \text{ and all } y \in H.
\]

Here \(e^{-(\lambda - A)t} \) is the semigroup generated by the operator \(-\lambda I + A \), \(K \) is the closed convex cone of \(C(H) \) consisting of all convex functions \(\varphi : H \to \mathbb{R} \) which satisfy the condition \(\varphi(y) \geq \varphi(0) = 0 \) for all \(y \in H \) and \(C_{lip}^1(H) \) is the space of all \(\varphi \in C^1(H) \) such that the Fréchet derivative \(\varphi^{(1)} \) is Lipschitz on \(H \).

(iii) \(F : U \to \mathbb{R} \) is a convex function which is bounded on bounded subsets and belongs to \(C^1(U) \). We associate the function \(h : U \to \mathbb{R}_+ \) defined by

©Balkan Society of Geometers, Geometry Balkan Press
\[h(u) = \sup \{ - \langle p, u \rangle + F(p); p \in U \} \text{ i.e., } h(u) = F^*(u), \]

to the function \(F \). Then the assumption (iii) implies \[\lim_{|u|_H \to \infty} \frac{h(u)}{|u|_H^r} = +\infty. \] Further assume that \(F \) and \(F^* \) are strictly convex.

(iv) \(\psi_0 : H \to \mathbb{R} \) is a function which belongs to \(K \cap C^1_{L^0}(H) \).

Under the above hypotheses, we see that \(\Psi^\infty < +\infty \) on \(H \) and for every \(y \in H \) the infimum defining \(\Psi^\infty(y) \) is attained in a unique pair \((x^*, u^*)\). Moreover, the function \(\Psi^\infty \) is convex and lower semicontinuous on \(H \). Since it is everywhere finite we conclude that it is continuous on \(H \).

Now we shall prove the following asymptotic result.

Theorem 1. Let assumptions (i), (ii), (iii) and (iv) be satisfied. Then the solution \(\Psi \) to the problem

\[\begin{align*}
\psi_t + F(B^* \psi_y) - (Ay, \psi_y) &= g; \quad t \geq 0, \quad y \in D(A) \\
\psi(0, y) &= \psi_0(y), \quad y \in H
\end{align*} \]

satisfies

\[\lim_{t \to \infty} \psi(t, y) = \psi^\infty(y) \text{ for all } y \in H. \]

We have denoted by \(\Psi_t \) and \(\Psi_y \) the partial derivatives (in a generalized sense) of the function \(\Psi \) with respect to \(t \) and \(y \), respectively. Here \(B^* \) is the adjoint of \(B \).

Proof: The solution \(\Psi \) to the Cauchy problem (4) is given by (see [1], p.54)

\[\begin{align*}
\psi(t, y) &= \inf \left\{ \int_0^t (g(x(s)) + h(u(s)))ds + \psi_0(x(t)); \quad x' = Ax + Bu, \right. \\
x(0) &= y; \quad u \in L^1(0, t; U) \right\}
\]

for \(t \geq 0, \ y \in H \). This yields

\[\int_0^t (g(x'(s)) + h(u'(s)))ds + \psi_0(x'(t)) = \psi(t, y) \leq \int_0^t (g(x^*(s)) + h(u^*(s)))ds + \psi_0(x^*(t)) \]

where \((x^*, u^*)\) is the optimal pair in Problem (1) and \((x', u')\) in (6), i.e.,

\[\begin{align*}
(x')' &= Ax' + Bu' \text{ on } [0, t] \\
x'(0) &= y.
\end{align*} \]

Letting \(t \to +\infty \), we see by (7) that

\[\lim \sup_{t \to \infty} \psi(t, y) \leq \psi^\infty(y). \]

We set

\[\hat{u}'(s) = \begin{cases} u'(s) & \text{for } 0 \leq s \leq t \\ 0 & \text{for } s > t \end{cases} \]
and
\[\tilde{x}'(s) = e^{As}y + \int_0^s e^{A(s-\tau)}B\tilde{u}(\tau)d\tau. \]
Let some sequence \(t_n \to \infty \) and let \(\{\tilde{x}^n\} \) and \(\{\tilde{u}^n\} \) be such that
\[\psi_\infty(y) \leq \int_0^\infty (g(\tilde{x}^n(s)) + h(\tilde{u}^n(s)))ds \leq \psi_\infty(y) + \frac{1}{n}, \]
\[(\tilde{x}^n)' = A\tilde{x}^n + B\tilde{u}^n \quad \text{on} \quad R^+ \]
\[\tilde{x}^n(0) = y. \]
Since \(|\tilde{x}^n(s)| \leq C \left(|y| + \int_0^s \|\tilde{u}^n(\tau)\|d\tau\right), \forall s \geq 0 \) and \(g(\tilde{x}^n(s)) \geq g(0) - |\partial g(0)||\tilde{x}^n(s)|, \)
\(\forall s \geq 0 \) by (9) it follows that \(\int_0^\infty h(\tilde{u}^n(s))ds \leq C \left(\int_0^\infty \|\tilde{u}^n(s)\|ds + 1\right) \) where \(C \) is independent of \(n \). The latter implies that \(\{\tilde{u}^n\} \) is weakly compact in \(L^1(R^+; U) \) (by virtue of the Dunford-Pettis theorem). Hence on some sequence \(t_n \to \infty \), \(\tilde{u}^n \to \tilde{u} \)
weakly in \(L^1(R^+; U) \) and \(\tilde{x}^n(s) \to \tilde{x}(s) \) weakly in \(H \) for every \(s \geq 0 \), where \(\tilde{x} \) is the mild solution to
\[\begin{cases}
 \tilde{x}' = Ax + Bu & \text{on} \quad R^+ \\
 x(0) = y.
\end{cases} \]
Since the functional \((x, u) \to \int_0^T (g(x) + h(u))dt\) is weakly lower semicontinuous on every \(C([0, T]; H) \times L^1(0, T; U) \) (because it is convex and lower semicontinuous), it follows by (7) and (8) that
\[\int_0^\infty (g(\tilde{x}(s)) + h(\tilde{u}(s)))ds \leq \limsup_{t \to \infty} \psi(t, y) \leq \psi_\infty(y) \]
which obviously implies (5) as claimed. \(\Box \)

Now let us consider the stationary Hamilton-Jacobi equation
\[F(B^*\psi_y) - (Ay, \psi_y) = g, \quad \forall y \in D(A) \]
in the real Hilbert space \(H \).

By a solution to (10) we shall mean a function \(\psi : H \to R \) which is Gâteaux differentiable and satisfies Eq. (10) for all \(y \in D(A) \).

Equation (10) is relevant in the calculus of variations with infinite horizon and in nonlinear analysis. The main result is

Theorem 2. Let assumptions (i), (ii) part (3) and (iii) be satisfied. Then Eq. (10) has at least one solution \(\psi_\infty \in K \). If also condition (2) holds then the solution \(\psi_\infty \) to Eq. (10) is unique.

Proof. For every \(t \geq 0 \), the unique optimal pair \((x^*, u^*)\) in Problem (1) is also an optimal pair for the finite horizon control problem
\[\psi_\infty(y) = \inf \left\{ \int_0^t (g(x(s)) + h(u(s)))ds + \psi_\infty(x(t)); \ x' = Ax + Bu, \ x(0) = y \right\} \]
\[= \int_0^t (g(x^*(s)) + h(u^*(s)))ds + \psi_\infty(x^*(t)). \]
By the maximum principle ([1], p. 13), for every \(t \geq 0 \) there exists \(p^t \in C([0,t]; H) \) which satisfies the system

\[
\begin{cases}
(p^t)' + A^*p^t \in \partial g(x^t), & 0 \leq s \leq t \\
B^*p^t \in \partial h(u^t), & 0 \leq s \leq t \\
p^t(t) \in -\partial \psi^\infty(x^t(t))
\end{cases}
\]

(Here \(\partial \) is the subdifferential symbol). Next by (11) we see that

\[
\psi^\infty(x^t(t)) = \int_t^\infty (g(x^s(s)) + h(u^s(s)))ds, \quad \forall t \geq 0.
\]

Assume that \(y \in D(A) \). Then \(x^t \) is right differentiable at \(t = 0 \) and \(\frac{d^+x^t}{dt}(0) = Ay + Bu^t(0) \). Since

\[
\lim_{t \to 0} \frac{\psi^\infty(x^t(t)) - \psi^\infty(y)}{t} \to \left(\eta, \frac{d^+x^t}{dt}(0) \right)
\]

where \(\eta \) is an element of \(\partial \Psi^\infty(y) \), it follows by (12) that

\[
(\eta, Ay + Bu^t(0)) + g(y) + h(u^t(0)) = 0
\]

where \(u^t(0) = \nabla h^*(-B^*\eta) \) and \(\eta \in \partial \psi^\infty(y) \) (we may take \(\eta = -p^t(0) \)). By using (13) and the conjugacy formula, we get

\[
F(B^*\eta) - (Ay, \eta) = g(y).
\]

To conclude the proof of existence it suffices to show that \(\Psi^\infty \) is Gâteaux differentiable, i.e., \(\partial \Psi^\infty \) is single valued.

To this end we define the operator \(\Gamma : H \to H \), \(\Gamma y = -p(0) \) where \(p \in C([0, T]; H) \) is the solution to the system (\(T \) is fixed)

\[
\begin{cases}
x' = Ax + Bu, & 0 \leq t \leq T \\
p' + A^*p \in \partial g(x), & 0 \leq t \leq T \\
x(0) = y, \quad p(T) \in -\partial \psi^\infty(x(T))
\end{cases}
\]

which, by virtue of the maximum principles is equivalent with the control problem

\[
\inf \left\{ \int_0^T (g(x) + h(u))dt + \Psi^\infty(x(T)); \ x' = Ax + Bu, \ x(0) = y \right\}.
\]

Since \(F \) and \(F^* \) are strictly convex, so is \(h^* \) and therefore there exists a unique optimal pair \((x, u) \) for the problem (15). Since \(F \) is Gâteaux differentiable, \(\partial F^* \) and therefore \(\partial h \) is single valued. Thus there exists a unique \(B^*p = \partial h(u) \) which satisfies the system (14) and therefore \(\Gamma \) is single valued. On the other hand, we see that \(\Gamma y \in \partial \psi^\infty(y) \). To prove that \(\Gamma = \partial \psi^\infty \) it suffices to show that the range \(R(I + \Gamma) \) is all of \(H \). To this end we consider the equation \(y + \Gamma y = w \) which is equivalent to
\[\begin{aligned}
&x' = Ax + Bu, \quad 0 \leq t \leq T \\
p' + A^*p \in \partial g(x), \quad 0 \leq t \leq T \\
x(0) = y, \quad p(0) = y - w \\
p(T) \in -\partial \Psi^\infty(x(T)) \\
B^*p \in \partial h(u), \quad 0 \leq t \leq T
\end{aligned} \]

(16)

and again by virtue of the maximum principle it is equivalent to the control problem

\[
\inf \left\{ \int_0^T (g(x) + h(u))dt + \Psi^\infty(x(T)) + \frac{1}{2}|x(0) - w|^2; \quad x' = Ax + Bu \right\}
\]

which clearly admits at least one solution which is also a solution to (16). Hence \(\Gamma = \partial \Psi^\infty \), and \(\partial \Psi^\infty = (\Psi^\infty)' \) is single valued as claimed.

As for uniqueness we consider the differential equation

\[
\begin{aligned}
x' &= Ax - B\nabla h^*(B^*\Psi^0_x(x)), \quad t \geq 0 \\
x(0) &= y
\end{aligned}
\]

(17)

where \(\Psi^0 \) is any solution to Eq. (10). For each \(y \in D(A) \), Eq. (17) has a unique solution \(\hat{x} \in W^{1,\infty}(R^+;H) \). We set \(\hat{u} = -\nabla h^*(B^*\Psi^0_x(x)) \) and take the inner product of (17) by \(-\Psi^0_{xx}(\hat{x}) \). Since \(\Psi^0 \) is a solution to Eq. (10) we get

\[
\frac{d}{dt}\Psi^0(\hat{x}(t)) - F(B^*\Psi^0_x(\hat{x}(t))) + g(\hat{x}(t)) + (\hat{u}(t), -B^*\Psi^0_x(x^*(t))) = 0
\]

a.e. \(t \geq 0 \). By using the conjugacy formula, the latter becomes

\[
\frac{d}{dt}\Psi^0(\hat{x}(t)) + g(\hat{x}(t)) + h(\hat{u}(t)) = 0 \quad \text{a.e.} \quad t \geq 0
\]

and therefore

\[
\Psi^0(y) = \Psi^0(\hat{x}(t)) + \int_0^t (g(\hat{x}(s)) + h(\hat{u}(s)))ds, \quad \forall t \geq 0.
\]

Finally

\[
\Psi^0(y) = \int_0^\infty (g(\hat{x}(s)) + h(\hat{u}(s)))ds \geq \Psi^\infty(y)
\]

where \(\Psi^\infty \) is given by (1). (To get (19) we have used the fact that \(\hat{x}(t_n) \to 0 \) for some \(t_n \to \infty \) because \(g(\hat{x}) \in L^1(R^+) \) and \(g \) satisfies condition (2)).

Now let \((x^*, u^*)\) be the optimal pair for Problem (1) \((y \in D(A))\). Again by Eq. (10) we have

\[
\begin{aligned}
\frac{d}{dt}\Psi^0(x^*(t)) &= (x^*(t), \Psi^0_x(x^*(t))) = (Ax^*(t) + Bu^*(t), \Psi^0_x(x^*(t))) = \\
&= F(B^*\Psi^0_x(x^*(t))) - g(x^*(t)) - (u^*(t), -B^*\Psi^0_x(x^*(t))) \\
&\geq -h(u^*(t)) - g(x^*(t)) \quad \text{a.e.} \quad t > 0
\end{aligned}
\]
and therefore
\[\Psi^0(x^*(t)) + \int_0^t (h(u^*(s)) + g^*(x^*(s)))ds \geq \Psi^0(y), \quad \forall t \geq 0. \]
Since \(g(x^*) \in L^1(\mathbb{R}^+) \) it follows that \(\lim_{t_n \to \infty} x^*(t_n) \to 0 \) for some sequence \(t_n \to \infty \)
and therefore \(\lim_{t_n \to \infty} \Psi^0(x^*(t_n)) = \Psi^0(0) = 0. \) Hence \(\Psi^0(y) \leq \Psi^\infty(y) \) for all \(y \in D(A) \).
Along with (19) the latter implies that \(\Psi^\infty = \Psi^0 \) as claimed. \(\square \)

Now we shall briefly discuss a Galerkin approximation of the stationary Hamilton-Jacobi equation (10). Assume that the hypotheses (i)-(iii) hold. It will be more convenient to regard \(A \) as a linear continuous operator from the space \(V \subset H \) to its dual \(V' \subset H \). Following a well-known scheme (see for instance [1], [2], [3]), the internal approximations of the spaces \(V \) and \(U \), of the operators \(A \) and \(B^* \) and of the functions \(F \) and \(g \) will be defined. Thus on the finite dimensional space \(V_h \), Eq. (10) becomes
\[(20) \quad F_h(B_h^*\Psi_h^y(y_h)) - (A_h y_h, \Psi_h^y(y_h))_h = g_h(y_h) \quad \text{for all} \quad y_h \in V_h. \]
By Theorem 2, Eq. (20) has a generalized solution \(\Psi_h : V_h \to R \) given by
\[\Psi_h^y(y_h) = \inf \left\{ \int_0^\infty (g_h(x_h(t)) + F_h^*(\Psi_h^y(t)))dt \right\} \]
where \(x_h, u_h \) satisfy the system
\[
\begin{cases}
 x'_h = A_h x_h + B_h u_h \ a.e. \ t > 0 \\
 x_h(0) = y_h.
\end{cases}
\]
As regards the convergence of the solutions \(\Psi_h \) to a solution \(\Psi \) to Eq. (10), we have the following result
\textbf{Theorem 3.} For \(h \to 0 \) we have \(\Psi_h^y(y_h) \to \Psi^y(y) \) for all \(y \in V \), where \(\Psi \) is the \textit{variational solution} to Eq. (10) given by (1).
\textbf{The proof} is similar (making obvious changes) to the proofs of the analogous results in [1] and [3].
\textbf{Acknowledgements.} A version of this paper was presented at the Third Conference of Balkan Society of Geometers, Workshop on Electromagnetic Flows and Dynamics, July 31 - August 3, 2000, University POLITEHNICA of Bucharest, Romania.

\textbf{References}

University Politehnica of Bucharest, Department of Mathematics I
Splaiul Independentei 313, 77206 Bucharest, Romania
e-mail:iftode@mathem.pub.ro