On Pseudo Ricci-Symmetric Manifolds

K. Arslan, R. Ezentas, C. Murathan and C. Özgür

Abstract

In the present study we consider pseudo Ricci-symmetric manifolds in the sense of M. C. Chak. We show that pseudo Ricci-symmetric manifolds satisfying \(\text{div} R = 0 \) (resp. \(\text{div} C = 0 \)) property are Einstein (resp. Ricci flat) manifolds.

Mathematics Subject Classification: 53C20, 53C25

Key words: \(R \)-harmonic manifold, Pseudo Ricci-symmetric manifold

1 Introduction

Let \(M \) be an \(n \)-dimensional \((n \geq 3) \) Riemannian manifold. For the vector fields \(X, Y, Z \in \chi(M) \) and the the Levi-Civita connection \(\nabla \) of \(M \) the curvature tensor \(R \) and the Ricci operator \(S \) of \(M \) are defined by

\[
R(X, Y)Z = \nabla_X (\nabla_Y Z) - \nabla_Y (\nabla_X Z) - \nabla_{[X,Y]}Z,
\]

and

\[
S(X, Y) = g(SX, Y)
\]

respectively. Furthermore for the vector field \(W \) the Riemannian Christoffel curvature tensor \(R \) of \(M \) is defined by \(R(X, Y, Z, W) = g(R(X, Y)Z, W) \) \([4]\).

Let \(\Pi \) be a non-degenerate tangent plane to \(M \) at \(p \in M \) given by \(X, Y \in \chi(M) \). Then the sectional curvature \(K(\Pi) \) of \(\Pi \) defined by

\[
K(X, Y)\{g(X, X)g(Y, Y) - g(X, Y)^2\} = g(R(X, Y)Y, X)
\]

which is independent of the choice of the basis \(X, Y \) for \(\Pi \).

A tensor field \(R \) of type \((1, 2)\) on \(M \) is called algebraic curvature tensor field if it has symmetric properties of the curvature tensor field of Riemannian manifolds.

The curvature tensor \(R \) satisfies the second Bianchi identity if

\[
\]

Let \(R \) be an algebraic curvature tensor field which satisfies the second Bianchi identity. If \(S \) is the associated Ricci tensor field then

© Balkan Society of Geometers, Geometry Balkan Press
(1.2) \[(\text{div} \mathcal{R})(X,Y,Z) = (\nabla_X S)(Y, Z) - (\nabla_Y S)(X, Z).\]

For a Riemannian manifold M if the Ricci tensor S is of the form $S = \lambda g$ then it
is called \textit{Einstein space} [4]. If $S = 0$ then M is called \textit{Ricci-flat}.

The Weyl conformal curvature tensor C is defined by

\[
C(X, Y, Z, W) = R(X, Y, Z, W) - \frac{1}{n-2} \{g(X, W)S(Y, Z) + g(Y, Z)S(X, W) - \\
- \frac{\tau}{(n-1)(n-2)} \{g(X, W)g(Y, Z) - g(X, Z)g(Y, W)\}.
\]

An algebraic curvature tensor field R is harmonic (or Codazzi type in the sense of [7]) if $(\text{div} \mathcal{R})(X, Y, Z) = 0$. A Riemannian manifold M is called R-harmonic if its
curvature tensor field R is harmonic [1].

The divergence $\text{div} C$ of the Weyl conformal curvature tensor C is defined by

\[
(\text{div} C)(X, Y, Z) = \frac{n-3}{n-2} \{(\nabla_X S)(Y, Z) - (\nabla_Y S)(X, Z)\} - \\
- \frac{1}{2(n-1)} \{g(Y, Z)\nabla_X \tau - g(X, Z)\nabla_Y \tau\}.
\]

In the present study we consider pseudo Ricci-symmetric submanifolds and also
hypersurfaces.

The notion of pseudo Ricci-symmetric (PRS) manifolds were introduced by M.
C. Chaki in 1987. A non-flat Riemannian manifold (M^n, g) ($n > 2$) is called \textit{pseudo
Ricci-symmetric} if its Ricci tensor S is not identically zero and satisfies

\[
(\nabla_X S)(Y, Z) = 2\alpha(X)S(Y, Z) + \alpha(Y)S(X, Z) + \alpha(Z)S(Y, X),
\]

where α is a 1-form which is non-zero for every $X, Y, Z \in \chi(M)$ and ∇ being operator
covariant differentiation with respect to the metric g [2]. In [3] the authors consid-
ered conformally flat pseudo Ricci-symmetric manifolds, see also [5] for the case M
is a contact manifold.

In the present study we consider pseudo Ricci-symmetric manifolds. We show that
pseudo Ricci-symmetric manifolds satisfy $\text{div} \mathcal{R} = 0$ (resp. $\text{div} C = 0$) property are
Einstein (resp. Ricci flat) manifolds.

2 \textbf{Pseudo Ricci-Symmetric manifolds}

Let (M, g), ($n \geq 3$), be an n-dimensional Riemannian manifold and e_i, e_j ($1 \leq i, j \leq n$)
othornormal vector fields tangent to M and K_{ij} is the sectional curvature of a
plane spanned by the vectors e_i and e_j. Then by definition of S we have

\[
S(e_i, e_i) = \sum_{k=1}^{n} g(\mathcal{R}(e_k, e_i)e_i, e_k) = \sum_{k=1}^{n} K_{ik},
\]
(2.2) \[S(e_j,e_j) = \sum_{k=1}^{n} K_{jk}, \quad S(e_i,e_j) = 0. \]

First we prove the following result.

Proposition. Let \(M^n \) be a \(n \)-dimensional Riemannian manifold. If \(M \) is pseudo Ricci-symmetric then

(2.3) \[\sum_{k=1}^{n} (K_{ik} - K_{jk}) g(e_j, \nabla_{e_i} e_i) = \alpha(e_j) \sum_{k=1}^{n} K_{ik}, \]

(2.4) \[e_i \left[\sum_{k=1}^{n} K_{ik} \right] = 4 \alpha(e_i) \sum_{k=1}^{n} K_{ik}, \]

(2.5) \[e_i \left[\sum_{k=1}^{n} K_{jk} \right] = 2 \alpha(e_i) \sum_{k=1}^{n} K_{jk}. \]

Proof. Let \(e_i, e_j \) be orthonormal vector fields tangent to \(M \). Combining (2.1)-(2.2) and (1.4) we find

(2.6) \[(\nabla_{e_i} S)(e_i,e_j) = \alpha(e_j) S(e_i, e_i), \]

(2.7) \[(\nabla_{e_i} S)(e_i,e_i) = 4 \alpha(e_i) S(e_i,e_i), \]

(2.8) \[(\nabla_{e_i} S)(e_j,e_j) = 2 \alpha(e_i) S(e_j,e_j). \]

Moreover, from the covariant differentiation of \(S \) we have

(2.9) \[(\nabla_{e_i} S)(e_i,e_j) = -S(\nabla_{e_i} e_i, e_j) - S(e_i, \nabla_{e_i} e_j), \]

(2.10) \[(\nabla_{e_i} S)(e_i,e_i) = \nabla_{e_i} S(e_i,e_i), \]

(2.11) \[(\nabla_{e_i} S)(e_j,e_j) = \nabla_{e_i} S(e_j,e_j) - 2S(\nabla_{e_i} e_j, e_j). \]

By the use of (2.1)-(2.2) we get

(2.12) \[S(\nabla_{e_i} e_i, e_j) = \sum_{k=1}^{n} g(R(e_k, e_i) e_i, e_j) = \sum_{k=1}^{n} K_{jkg}(e_j, \nabla_{e_i} e_i), \]

(2.13) \[S(e_i, \nabla_{e_i} e_j) = \sum_{k=1}^{n} K_{jkg}(e_j, \nabla_{e_i} e_i), \quad S(\nabla_{e_i} e_i, e_i) = 0. \]

Combining (2.13), (2.13) and (2.9) we obtain
(2.14) \[(\nabla_{e_i} S)(e_i, e_j) = \left(\sum_{k=1}^{n} (K_{ik} - K_{jk}) \right) g(e_j, \nabla_{e_i} e_i). \]

Furthermore differentiating (2.1) and (2.2) covariantly we have

(2.15) \[(\nabla_{e_i} S)(e_i, e_i) = e_i \left[\sum_{k=1}^{n} K_{ik} \right]. \]

(2.16) \[(\nabla_{e_i} S)(e_j, e_j) = e_i \left[\sum_{k=1}^{n} K_{jk} \right] \left(\text{or } (\nabla_{e_j} S)(e_i, e_i) = e_j \left[\sum_{k=1}^{n} K_{ik} \right] \right). \]

Since the left hand sides of the equations (2.6)-(2.8) are equal to the left hand sides of (2.14)-(2.16) we get the result. □

Theorem 2.2. Let M be a n-dimensional pseudo Ricci-symmetric manifold. If M is R-harmonic (i.e \(\text{div} R = 0 \)) then it is Ricci-flat.

Proof. Let M is R-harmonic so \(\text{div} R = 0 \). Using (1.2) we have

(2.17) \[(\nabla_{e_i} S)(e_i, e_j) - (\nabla_{e_j} S)(e_i, e_i) = 0. \]

Making use of (2.7), (2.8) and (2.1) the equation (2.17) reduces to \(\alpha(e_j) S(e_i, e_i) = 0. \) Since \(\alpha \) is a non-zero one form then \(S(e_i, e_i) = 0. \) Thus M is Ricci flat this complements the proof. □

Theorem. Let M be a n-dimensional pseudo Ricci-symmetric manifold. If \(\text{div} C = 0 \) then \(M^n \) is an Einstein manifold.

Proof. Suppose \(\text{div} C = 0 \). Then by (1.3) we have

(2.18) \[(\nabla_{e_i} S)(e_i, e_j) - (\nabla_{e_j} S)(e_i, e_i) + \frac{1}{2} \frac{n - 2}{(n - 1)(n - 3)} e_j[\tau] = 0. \]

where \(\nabla_{e_j} \tau = e_j[\tau] \). Substituting (2.14) and (2.16) into (2.18) we obtain

(2.19) \[\sum_{k=1}^{n} (K_{ik} - K_{jk}) g(e_j, \nabla_{e_i} e_i) - e_j \left[\sum_{k=1}^{n} K_{ik} \right] + \frac{1}{2} \frac{n - 2}{(n - 1)(n - 3)} e_j[\tau] = 0. \]

Moreover, substituting (2.3) and (2.5) into (2.19) we get

\[-\alpha(e_j) \sum_{k=1}^{n} K_{ik} + \frac{1}{2} \frac{n - 2}{(n - 1)(n - 3)} e_j[\tau] = 0. \]

By the use of (2.1) the above equation becomes

(2.20) \[\alpha(e_j) S(e_i, e_i) = \frac{1}{2} \frac{n - 2}{(n - 1)(n - 3)} e_j[\tau]. \]

On the other hand

(2.21) \[\sum_{i=1}^{n} \alpha(e_j) S(e_i, e_i) = \frac{1}{2} \frac{n - 2}{(n - 1)(n - 3)} e_j[\tau] \sum_{i=1}^{n} g(e_i, e_i), \]
which implies

\begin{equation}
(2.22) \quad e_j[\tau] = \frac{2(n - 1)(n - 3)}{n(n - 2)} \alpha(e_j) \tau.
\end{equation}

However combining (2.22) and (2.21) one can get \(S(e_i, e_i) = \frac{1}{n} \tau \). Thus \(M \) is an Einstein manifold. □

Theorem 2.4. Let \(M \) be a \(n \)-dimensional pseudo Ricci-symmetric manifold whose one of family of curvature lines consists of geodesic (i.e. \(\nabla_{e_i} e_i = 0 \)). Then \(M^n \) is Ricci flat.

Proof. Putting \(\nabla_{e_i} e_i = 0 \) into (2.3) we get \(\alpha(e_i) \sum_{k=1}^{n} K_{ik} = 0 \). Since the one form \(\alpha \) is non-zero then by (2.1) one can get \(S(e_i, e_i) = 0 \), which means that \(M \) is Ricci flat. □

Acknowledgements. This study is supported by Uludağ University Research Fund.

References

Kadri Arslan, Rudvan Ezentaş and Cihan Özkür

Cengizhan Murathan

Department of Mathematics

Uludağ University

16059 Bursa, TURKEY

E-mail: arslan@uludag.edu.tr

Department of Mathematics

Bahkisir University

10100, Bahkisir, TURKEY

E-mail: cozgur@balikesir.edu.tr