A Convex Polygon as a Discrete Plane Curve

Stanisław Góźdź

Abstract

In this paper we examine a convex polygon as a discrete substitute of a plane curve. We introduce a polygon with constant length of a diagonal as a counterpart of an oval with constant width. Moreover we define a convex polygon with constant perimeter of a special class circumscribed polygons.

Mathematics Subject Classification: 52C10, 42A32
Key words: n-polygon, diagonal, b-circumscribed, discrete Fourier sum

1 Introduction

In papers [1,3,4,6] applications of Fourier series to plane curves are presented . Plane curves examined in these papers are expressed by the following formulas:

\[
\begin{align*}
 t \mapsto z(t) &= \int_0^t f(s) e^{is}ds, \\
 z(t) &= \int_0^t k(s) f(s) e^{iK(s)} ds,
\end{align*}
\]

where \(f \) is a periodic function. The representation of considered curves is associated with the integral. Therefore we search for a geometrical domain associated with a finite sum instead of an integral. The geometrical domain is included in the class of all convex polygons in the plane. To define a representation of a convex polygon we imitate formula (1.1). Therefore we consider a periodic sequence instead of a periodic function. Next we introduce a discrete Fourier series for a periodic sequence as follows:

Let \(x_1, x_2, x_3, \ldots \) be a periodic sequence of real numbers with the period \(n \), i.e.:

\[x_{v+n} = x_v, v = 0, 1, 2, \ldots \]

Then we apply a known trigonometrical interpolative polynomial

\[
y(t) = a_0 + \sum_{j=1}^{n-1} \left[a_j \cos \frac{2\pi j t}{n} + b_j \sin \frac{2\pi j t}{n} \right],
\]

where

©Balkan Society of Geometers, Geometry Balkan Press
\[a_0 = \frac{1}{n} \sum_{\mu=0}^{n-1} x_\mu, a_j = \frac{1}{n} \sum_{\mu=0}^{n-1} x_\mu \cos \frac{2\pi j\mu}{n}, \quad b_j = \frac{1}{n} \sum_{\mu=0}^{n-1} x_\mu \sin \frac{2\pi j\mu}{n}. \]

The trigonometrical interpolative polynomial satisfies the condition:

\[y(v) = x_v, \quad v = 0, 1, \ldots, n - 1. \]

If we substitute instead the continuous variable \(t \in (-\infty, +\infty) \) the discrete variable \(v = 0, 1, 2, \ldots, \) then we obtain

\[x_v = a_0 + \sum_{j=1}^{n-1} \left(a_j \cos \frac{2\pi jv}{n} + b_j \sin \frac{2\pi jv}{n} \right). \]

In the sequel we call the formula (1.2) a discrete Fourier series of a periodic sequence \(\{x_v\} \). We apply the discrete Fourier series to an n-polygon in the plane. The n-polygon is a polygon with \(n \) sides having the same interior angles equal to \(2\pi - \frac{2\pi}{n} \), see [2,1].

In the paper n-polygon is "a discrete curve".

With reference to formula (1.1) we recall the following relations. There exists a strict correspondence between a property of curve (1.1) and a property of the function \(f \). For example the following are known:

Lemma A. (see [5,1]). A curve (1.1) is closed iff Fourier coefficients \(A_1, B_1 \) of \(f \) vanish, i.e.: \(A_1 = B_1 = 0 \).

Lemma B. (see [6]). If a closed curve represented by (1.1) is a curve with constant width, then Fourier coefficients \(A_{2n}, B_{2n} \) of \(f \) vanish, i.e.: \(A_{2n} = B_{2n} = 0 \).

Lemma C. (see [2,1]). If a closed curve represented by (1.1) is a curve with constant perimeter of a circumscribed n-polygon, then the Fourier coefficients \(A_{mj}, B_{mj}, \ j = 1, 2, 3, \ldots \) vanish, i.e.: \(A_{mj} = B_{mj} = 0 \).

Remark A.
If \(f \) is a constant function (different from zero), then equation (1.1) forms a circle. This means that in this case all Fourier coefficients of \(f \) vanish with the exception of \(A_0 \).

In a discrete domain, n-polygon is represented as the sum

\[k \mapsto z_k = \sum_{v=0}^{k} x_v e^{i \frac{2\pi v}{n}}, \]

where \(\{x_v\} \) is a sequence and \(k = 0, 1, \ldots, n - 1 \).

There exists a correspondence between a property of an n-polygon and a property of a sequence \(\{x_v\} \). At the discrete domain a counterpart of a curve with constant width is a 2n-polygon with constant diagonal (see p.7).

For 2n-polygon with constant diagonal the following counterpart of the Barbier theorem is satisfied:

\[L = \frac{\sin \frac{\pi}{n}}{\frac{2\mu}{2n}} d, \]
where L denotes the perimeter of $2n$-polygon and d is the length of a constant diagonal.

A counterpart of a curve with constant perimeter of a circumscribed m-polygon is an mn-polygon with constant perimeter of a b-circumscribed m-polygon defined as follows:

Let P be a convex polygon with vertices w_1, w_2, \ldots, w_n, $n > 2$. To circumscribe a polygon with k sides ($3 \leq k \leq n$) on polygon P, we arbitrary choose vertices

\[w_{i_1}, w_{i_2}, \ldots, w_{i_k}. \]

Next we draw a straight line $l_{i_1}, l_{i_2}, \ldots, l_{i_k}$ through vertices $w_{i_1}, w_{i_2}, \ldots, w_{i_k}$. We consider only straight lines $l_{i_1}, l_{i_2}, \ldots, l_{i_k}$ passing through the outside angles of polygon P. The point of intersection of successive straight lines $l_{i_s}, l_{i_{s+1}}, s = 1, 2, \ldots, k - 1$ is a vertex of the circumscribed polygon. We call the circumscribed polygon b-circumscribed on polygon P if and only if all straight lines $l_{i_1}, l_{i_2}, \ldots, l_{i_k}$ are bisectrices of the outside angles of the polygon P.

A property of a plane curve (represented by (1.1)) and "a discrete theory plane curve" are connected with the main result of the paper.

Perimeter $2\pi r$ of a circle with radius r can be obtained as the limit of perimeters of well-shaped regular polygons circumscribed on the circle. The above-mentioned idea and the counterpart of the Barbier theorem suggest that perimeter πd for an oval with constant width d can be obtained in the similarly way. To reach this aim we prove the following:

Theorem 1.1 Every $2n$-polygon circumscribed on an oval with constant width δ is a $2n$-polygon with constant diagonal equal to

\[\delta \frac{\cos \frac{\pi}{2n}}{n}. \]

Theorem 1.2 Every mn-polygon circumscribed on an oval with constant perimeter l of a circumscribed m-polygon is mn-polygon with constant perimeter $\frac{l}{\cos \frac{\pi}{mn}}$ of b-circumscribed m-polygon.

2 Properties of a periodic sequence

A periodic sequence has some properties similar to a property of a periodic function. Therefore we recall (see [6,1]) those properties of a periodic function concerning of the discrete domain. Let f be 2π-periodic function having uniformly convergent Fourier series,

\[f(t) = \frac{1}{2}A_0 + \sum_{n=1}^{\infty} [A_n \cos(nt) + B_n \sin(nt)] . \]

Theorem A. Expression $f(t) + f(t + \pi)$ is a constant function iff Fourier coefficients $A_{2j}, B_{2j}, j = 1, 2, \ldots$ vanish.

Theorem B. Expression
\[f(t) + f(t + \frac{2\pi}{m}) + f(t + 2\frac{2\pi}{m}) + \ldots + f \left(t + (m - 1)\frac{2\pi}{m} \right) \]

is a constant function iff Fourier coefficients \(A_{mj}, B_{mj}, \quad j = 1, 2, \ldots \) vanish.

Theorems A and B have the following counterparts at the discrete domain:

Let \(x_v \) be a 2\(n \)-periodic sequence, i.e.: \(x_{v+2n} = x_v, \quad v = 0, 1, 2, \ldots \). In this case sequence \(x_v \) has the discrete Fourier sum in the form

\[x_v = a_0 + \sum_{j=1}^{2n-1} [a_j \cos \frac{\pi j v}{n} + b_j \sin \frac{\pi j v}{n}] \]

We prove two following lemmas:

Lemma 2.1 If \(\{x_v\} \) is a 2\(n \)-periodic sequence, then the discrete Fourier sum of \(x_v + x_{v+n} \) has the form

\[x_v + x_{v+n} = 2a_0 + 2 \sum_{l=1}^{n-1} [a_{2l} \cos \frac{2\pi l v}{n} + b_{2l} \sin \frac{2\pi l v}{n}] \]

Moreover

Lemma 2.2 If

\[x_v = a_0 + \sum_{j=1}^{2n-1} [a_j \cos \frac{\pi j v}{n} + b_j \sin \frac{\pi j v}{n}] \]

is the discrete Fourier sum of 2\(n \)-periodic sequence \(\{x_v\} \), then the sequence \(\{x_v + x_{v+n}\} \) is a constant function if and only if \(a_{2l} = b_{2l} = 0 \) for \(l = 1, 2, \ldots, n - 1 \).

Proof. To prove the lemma we verify that if \(x_v + x_{v+n} = c, \quad v = 0, 1, \ldots \), then \(a_{2l} = b_{2l} = 0, \quad l = 1, 2, \ldots, n - 1 \). Indeed we have

\[a_{2l} = \frac{1}{2n} \sum_{\mu=0}^{2n-1} x_{\mu} \cos (2\pi \frac{\mu}{n}) = \]

\[= \frac{1}{2n} (x_0 + x_1 \cos \frac{2\pi l}{n} + x_2 \cos \frac{4\pi l}{n} + \ldots + x_n \cos \frac{2\pi l}{n} + x_{n+1} \cos \frac{4\pi l}{n} + \ldots + x_{2n} \cos \frac{4\pi l}{n} (n+1) + \ldots) = \]

\[= \frac{1}{2n} ((x_0 + x_n) + (x_1 + x_1+n) \cos \frac{2\pi l}{n} + (x_2 + x_2+n) \cos \frac{4\pi l}{n} + \ldots) = \]

\[= \frac{c}{2n} (1 + \cos \frac{2\pi l}{n} + \cos \frac{4\pi l}{n} + \ldots) = 0, \]

because

\[1 + e^{i\pi} + \ldots + e^{i\frac{(n-1)n}{n}} = 0 \]

hence sum

\[\sum_{v=0}^{n-1} \cos \frac{v\pi}{n} = 0 \]
vanishes. Similarly we compute that $b_{2l}=0, l=1,2,...,n-1$. So lemmas 1 and 2 are strict counterparts of the relation between Fourier coefficients of a 2π-periodic function $f(t)$ and the function $f(t)+f(t+\pi)\equiv C$. Theorem B has the following discrete counterpart:

Lemma 2.3 If $\{x_v\}$ is a $m\cdot n$-periodic sequence and the discrete Fourier sum

$$x_v = a_0 + \sum_{j=1}^{m-1} \left[a_j \cos \frac{2\pi j v}{m \cdot n} + b_j \sin \frac{2\pi j v}{m \cdot n} \right]$$

is given, then the sequence $x_v + x_{v+n} + x_{v+2n} + \ldots + x_{v+(m-1)n}$ has the discrete Fourier sum in the form

$$x_v + x_{v+n} + x_{v+2n} + \ldots + x_{v+(m-1)n} =$$

$$= m a_0 + m \sum_{l=1}^{n-1} \left[a_{md} \cos \frac{2\pi lv}{n} + b_{md} \sin \frac{2\pi lv}{n} \right].$$

Moreover

Lemma 2.4 If the discrete Fourier sum of $m\cdot n$-periodic sequence is given, then the sequence $x_v + x_{v+n} + x_{v+2n} + \ldots + x_{v+(m-1)n}$ is constant if and only if

$$a_{ml} = b_{ml} = 0, \quad l = 1, 2, \ldots, n-1.$$

3 Convex polygons

Let x_v be an n-periodic sequence of real numbers. In this section we consider a polygon line represented by (1.3):

$$k \mapsto z_k = \sum_{v=0}^{k} x_v e^{i\frac{2\pi v k}{n}}.$$

The correspondence (1.3) describes the polygon line whenever $n > 2$. This means that for each fixed sequence x_v points $z_k, \quad k = 0, 1, 2, \ldots$ are vertices of the polygon line in the Euclidean plane, see Fig 1.
Fig.1 Polygon line z_k.

Obviously the value $x_k, k = 0, 1, \ldots$ is equal to the distance between points z_{k-1} and z_k. Polygon line with vertices z_k becomes a convex polygon if we assume that:

(a) $x_v > 0,$

(b) $a_1 = b_1 = 0.$

Indeed, applying assumptions (a) and (b), we easily compute that

$$z_{k+n} = \sum_{v=0}^{k+n} x_v e^{i2\pi v/n} = z_k + \sum_{v=k+1}^{k+n} x_v e^{i2\pi v/n}.$$

Next we analyse the sum

$$S = \sum_{v=k+1}^{k+n} x_v e^{i2\pi v/n} = \sum_{v=k+1}^{k+n} x_v \cos \frac{2\pi v}{n} + i \sum_{v=k+1}^{k+n} x_v \sin \frac{2\pi v}{n}.$$

By the periodicity of sequence x_v we have:

$$\sum_{v=k+1}^{k+n} x_v \cos \frac{2\pi v}{n} =$$

$$= x_{k+1} \cos \frac{2\pi(k+1)}{n} + x_{k+2} \cos \frac{2\pi(k+2)}{n} + \ldots +$$

$$+ x_n \cos \frac{2\pi n}{n} + x_{n+1} \cos \frac{2\pi(n+1)}{n} + \ldots + x_{k+n} \cos \frac{2\pi(k+n)}{n} =$$

$$= x_0 + x_1 \cos \frac{2\pi}{n} + \ldots + x_k \cos \frac{2\pi k}{n} + x_{k+1} \cos \frac{2\pi(k+1)}{n} + \ldots + x_{n-1} \cos \frac{2\pi(n-1)}{n} = na_1.$$

Similarly we compute that
\[\sum_{v=k+1}^{k+n} x_v \sin \frac{2\pi v}{n} = nb_1. \]

Finally we obtain
\begin{equation}
(3.5) \quad z_{k+n} = z_k + n(a_1 + ib_1).
\end{equation}

Equality (3.5) implies the following:

Lemma 3.1 The polygon line with vertices \(z_k \) is closed if and only if the coefficients \(a_1 \) and \(b_1 \) of the discrete Fourier sum of sequence \(x_v \) vanish.

The above-mentioned lemma is the strict counterpart of Lm.A.

A polygon line with vertices \(z_k \) becomes a well-shaped regular polygon with \(n \) sides whenever \(x_v \) is a constant sequence. Therefore, comparing Remark A with formula (1.3), we state that a well-shaped regular polygon is a discrete counterpart of a circle.

4 On \(n \)-polygons with constant diagonal

In this section we examine \(2n \)-polygons represented by formula

\begin{equation}
(4.6) \quad z_k = \sum_{v=0}^{k} x_v e^{i \frac{2\pi v}{n}},
\end{equation}

where \(n \geq 2 \) and the sequence \(x_v \) satisfies the following conditions:

(i) \(x_v > 0 \),

(ii) \(x_{v+2n} = x_v \quad v = 0, 1, \ldots \),

(iii) \(x_v + x_{v+n} = c, \quad v = 0, 1, \ldots \),

(iv) \(a_1 = b_1 = 0 \).

Then the sector between points \(z_k \) and \(z_{k+n} \) is a diagonal of the polygon. Such a diagonal is called \(\frac{1}{2} \)-diagonal of \(2n \)-polygon because the number all vertices of the polygon between \(z_k \) and \(z_{k+n} \) is equal the number all vertices of the polygon between \(z_{k+n} \) and \(z_k \).

Now we prove the main result of the paper.

Theorem 4.1 If vertices of a \(2n \)-polygon are determined by formula (4.6) and the sequence \(x_v \) satisfies conditions (i)-(iv), then all \(\frac{1}{2} \)-diagonals of the polygon have the same length.

Proof. We consider a \(2n \)-polygon represented by equation (4.6). Let \(p_k \) denote a \(\frac{1}{2} \)-diagonal of the polygon. We put

\[T_k = e^{i \frac{2\pi k}{n}} e^{i \frac{2\pi v}{n}} = e^{i \frac{2\pi k + 1}{2n}} \quad \text{and} \quad N_k = i T_k. \]
The vectors \(T_k, N_k \) are parallel to bisectrices of outside and inside angle at vertices \(z_k, k = 0, 1, \ldots \) of \(2n \)-polygon, respectively. Vectors \(T_k, N_k \) establish a basis for \(k = 0, 1, \ldots \). Therefore

\[
p_k = D_k T_k - d_k N_k,
\]

where \(d_k = [p_k, T_k] \) and \(D_k = [p_k, N_k] \) are determinants of two pairs of vectors \(p_k, T_k \) and \(p_k, N_k \), respectively. Now we obtain the discrete Fourier sum of \(d_k \) and \(D_k \). First

\[
d_k = [p_k, T_k] = \sum_{v=k+1}^{k+n} x_v e^{i \frac{2\pi}{n} \frac{(2k+1)\pi}{n} v}
= \sum_{v=k+1}^{k+n} x_v \sin \left(\frac{(2k+1)\pi}{n} - \frac{\pi v}{n} \right)
= \sum_{v=k+1}^{k+n} x_v \sin \left(\frac{2k-2v+1}{2n} \right).
\]

On the other hand we have the following formula

\[
x_v = a_0 + \sum_{l=1}^{n-1} [a_{2l+1} \cos \left(\frac{(2l+1)\pi}{n} v \right) + b_{2l+1} \sin \left(\frac{(2l+1)\pi}{n} v \right)],
\]

and we insert it into the formula \(d_k \). Hence we obtain

\[
d_k = a_0 \sum_{v=k+1}^{k+n} \frac{\sin \left(\frac{2k-2v+1}{2n} \right)}{2n} +
= \frac{a_0}{\sin \frac{\pi}{2n}} \sin \frac{\pi}{2n} =
\]

Similarly we compute that \(D_k = 0 \). So we have

\[
p_k = \frac{a_0}{\sin \frac{\pi}{2n}} T_k.
\]

This means that every \(\frac{1}{2} \)-diagonal of the \(2n \)-polygon has the same length equal to

\[
|p_k| = \frac{a_0}{\sin \frac{\pi}{2n}}.
\]

\[\square\]
Let L be a perimeter of $2n$-polygon with constant diagonal and let d be a length of an $\frac{1}{2}$-diagonal. Then we have the following counterpart of the Barbier’s formula:

\begin{equation}
L = \pi \frac{\sin \frac{\pi}{2n}}{x_{2n-1}} \cdot d
\end{equation}

because

\begin{equation}
\frac{1}{2n}(x_0 + x_1 + \ldots + x_{2n-1}) = \frac{1}{2n}L.
\end{equation}

The relation $D_k = 0$ means that

Corollary 4.1 Each $\frac{1}{2}$-diagonal of $2n$-polygon determined by a sequence x_v satisfying conditions (i)-(iv) is a bisectrix of an inside angle of the polygon.

To define a $2n$-polygon with constant diagonal by formula (4.6) we need a sequence x_v satisfying conditions (i)-(iv). This means that we solve the linear system $n + 1$ equations with $2n$ unknown quantities. We solve these equations for $n = 3,4$. The sequence $x_0 = d, x_1 = m - d, x_2 = d, x_3 = m - d, x_4 = d, x_5 = m - d$ determines 6-polygon with constant diagonal by formula (4.6) for fixed numbers $d > 0$ and $m - d > 0$. Then

\begin{align*}
z_0 &= d, \\
z_1 &= d + (m - d)e^{i\frac{\pi}{6}}, \\
z_2 &= z_1 + de^{i\frac{\pi}{6}}, \\
z_3 &= z_2 + (m - d)e^{i\frac{\pi}{6}}, \\
z_4 &= z_3 + de^{i\frac{\pi}{6}}, \\
z_5 &= z_4 + (m - d)e^{i\frac{5\pi}{6}}.
\end{align*}

To define a 8-polygon with constant diagonal we apply the following sequence.

\begin{align*}
x_0 &= \frac{a}{2}, \\
x_1 &= \frac{a}{2} + c - \frac{1}{\sqrt{2}}, \\
x_2 &= \frac{a}{2} + c + \frac{1}{\sqrt{2}}, \\
x_3 &= \frac{a}{2} + e - \frac{1}{\sqrt{2}}, \\
x_4 &= \frac{a}{2} + e + \frac{1}{\sqrt{2}}, \\
x_5 &= \frac{a}{2} - c - \frac{1}{\sqrt{2}}, \\
x_6 &= \frac{a}{2} + c - \frac{1}{\sqrt{2}}, \\
x_7 &= \frac{a}{2} - c + \frac{1}{\sqrt{2}},
\end{align*}

where a, c, e are arbitrary numbers changed such that $x_v > 0, v = 0, 1, \ldots, 7$.

Now we present a simple method of defining a $2n$-polygon with constant diagonal. Let f be a 2π-periodic real positive function such that

\begin{equation}
f(t) + f(t + \pi) = C \quad \text{for all } t.
\end{equation}

Then the Fourier series of f has the form (see[8]):

\begin{equation}
f(t) = \frac{1}{2}A_0 + \sum_{j=0}^{\infty} [A_{2j+1} \cos((2j + 1)t) + B_{2j+1} \sin((2j + 1)t)].
\end{equation}

Moreover we assume that the series is uniformly convergent to f. Keeping the above-mentioned notions we prove the following lemma:
Lemma 4.1 For each fixed t the sequence
\[x_v = f(t + v \frac{\pi}{n}), \quad v = 0, 1, \ldots \]
determines the $2n$-polygon with constant diagonal by formula (4.6).

Proof. Conditions (i) and (ii) are obvious. We verify the remaining relations.
(iii)
\[x_v + x_{v+n} = f(t + v \frac{\pi}{n}) + f(t + (v + n) \frac{\pi}{n}) = C, \]
(iv)
\[2n a_1 = \sum_{v=0}^{n-1} f(t + v \frac{\pi}{n}) \cos \frac{v\pi}{n} = \]
\[= \sum_{v=0}^{n-1} \left(\frac{1}{2} A_0 + \sum_{j=1}^{\infty} [A_{2j+1} \cos((2j + 1)(t + v \frac{\pi}{n})) + B_{2j+1} \sin((2j + 1)(t + v \frac{\pi}{n})) \right) \cos \frac{v\pi}{n} = \]
\[= \frac{1}{2} A_0 \sum_{v=0}^{n-1} \cos \frac{v\pi}{n} + \sum_{j=1}^{\infty} \left(A_{2j+1} \sum_{v=0}^{n-1} \cos((2j + 1)(t + v \frac{\pi}{n})) \cos \frac{v\pi}{n} + B_{2j+1} \sum_{v=0}^{n-1} \sin((2j + 1)(t + v \frac{\pi}{n})) \cos \frac{v\pi}{n} \right) = 0. \]

To verify that the sums:
\[\sum_{v=0}^{n-1} \cos((2j + 1)(t + v \frac{\pi}{n})) \cos \frac{v\pi}{n}, \]
\[\sum_{v=0}^{n-1} \sin((2j + 1)(t + v \frac{\pi}{n})) \cos \frac{v\pi}{n}, \]
vanish, we apply simple trigonometric relations and we successively compute that
\[\sum_{v=0}^{n-1} \cos((2j + 1)(t + v \frac{\pi}{n}) + \frac{v\pi}{n}) = \]
\[= \frac{\sin((j+1)\frac{\pi}{n}) - 2jt - t}{2 \sin(j+1)\frac{\pi}{n}} - \frac{\sin(j(\frac{1}{n} - 4) + \frac{1}{n} - 4)\pi - 2jt - t}{2 \sin((\frac{1}{n} + \frac{1}{n})\pi)} = 0 \]
\[\sum_{v=0}^{n-1} \cos((2j + 1)(t + v \frac{\pi}{n}) - \frac{v\pi}{n}) = \]
\[= \frac{\sin(\frac{\pi}{n} - 2jt - t)}{2 \sin(\frac{\pi}{n})} - \frac{\sin(j(\frac{1}{n} - 4)\pi - 2jt - t)}{2 \sin(\frac{\pi}{n}) \sin(\frac{v\pi}{n} + (2j + 1)(t + \frac{\pi}{n}))} = 0 \]
\[\sum_{v=0}^{n-1} \sin((2j + 1)(t + v \frac{\pi}{n}) + \frac{v\pi}{n}) = \]

\[\frac{\cos((\frac{j}{n} + \frac{1}{n})\pi - 2jt - t)}{2\sin((\frac{j}{n} + \frac{1}{n})\pi))} - \frac{\cos((j(\frac{1}{n} - 4) + \frac{1}{n} - 4)\pi - 2jt - t)}{2\sin((\frac{j}{n} + \frac{1}{n})\pi))} = 0. \]

\[\sum_{v=0}^{n-1} \sin((2j + 1)(t + v \frac{\pi}{n}) - \frac{v\pi}{n}) = \]

\[\frac{\cos(\frac{j\pi}{n} - 2jt - t)}{2\sin(\frac{j\pi}{n})} - \frac{\cos(j(\frac{1}{n} - 4)\pi - 2jt - t)}{2\sin(\frac{j\pi}{n} j)} = 0. \]

To verify the above-mentioned equalities the computer program "Derive" was used. Therefore \(a_1 = 0\). Similarly we compute that \(b_1 = 0\).

4.1 On \(2n\)-polygons circumscribed on an oval with constant width

In this subsection we prove the Th.1.1, i.e.: All \(2n\)-polygons circumscribed on an oval with constant width \(\delta\) are \(2n\)-polygons with constant diagonal equal to

\[\frac{\delta}{\cos \frac{\pi}{n}}. \]

Proof. Let an oval in arc length parametrization be represented by equation

\[s \mapsto z(s) = x(s) + iy(s). \]

We will denote a curvature, tangent and normal vectors at point \(z(s)\) by \(k(s), T_s, N_s\), respectively. Moreover we define \(K(s) = \int_0^s k(t)dt\). Now we apply function \(\varphi(s) = K^{-1}(K(s) + \frac{\pi}{n})\), where \(K^{-1}\) is an inverse function of \(K\). Denoting \(\varphi^n(s) = \underbrace{\varphi(\varphi \ldots \varphi(s) \ldots)}_{v\text{-times}}\) we easy observe that \(\varphi^n = K^{-1}(K(s) + \pi)\). Obviously

\[|z(s) - z(\varphi^n(s))| = |z(\varphi(s) - z(\varphi^n(s)))| = \delta, \quad \text{see Fig. 2.} \]
Fig. 2. 2n-polygon circumscribed on an oval.

Next we consider the following expressions
\[d_v = [x(\varphi^v(s)) - x(\varphi^{v+1}(s)), T_{\varphi^v(s)}], \quad v = 0, 1, \ldots, 2n - 1, \]
\[D_v = [x(\varphi^v(s)) - x(\varphi^{v+1}(s)), N_{\varphi^v(s)}], \quad v = 0, 1, \ldots, 2n - 1. \]

Applying the same considerations as in [6, p. 373] we solve the following system of equations:
\[z(\varphi^v(s)) + \xi_v T_{\varphi^v(s)} = z(\varphi^{v+1}(s)) + \eta_v T_{\varphi^{v+1}(s)}, \quad v = 0, 1, \ldots. \]

Hence we obtain the points
\[A : z(s) + [-D_0 - d_0 \cot \frac{\pi}{n}] T_s, \]
\[B : z(\varphi^n(s)) + [-D_n - d_n \cot \frac{\pi}{n}] (-T_s). \]

Now we compute the length of the diagonal AB:
\[|AB| = |z(s) - z(\varphi^n(s)) + [(-D_n - D_0) + (-d_n - d_0) \cot \frac{\pi}{n}] T_s|, \]
but
\[z(s) - z(\varphi^n(s)) = -\delta N_s \]
\[D_n + D_0 = -\delta \sin \frac{\pi}{n} \]
\[d_n + d_0 = \delta (1 - \cos \frac{\pi}{n}). \]

Inserting these relations we express the length |AB| as follows
\[|AB| = | -\delta N_s - \delta [\sin \frac{\pi}{n} + (1 - \cos \frac{\pi}{n}) \cot \frac{\pi}{n}] T_s| = \]
\[= \delta| - N_\delta + \tan \frac{\pi}{2n} T_n| = \frac{\delta}{\cos \frac{\pi}{2n}}. \]

This implies that a perimeter of 2n-polygons (circumscribed on the oval) tends to \(\pi \delta \). Indeed we have
\[
\pi \left(\frac{\sin \frac{\pi n}{2n}}{\cos \frac{\pi n}{2n}} \right) \delta \xrightarrow{n \to \infty} \pi \delta.
\]

5 On \(m \)-polygons circumscribed on an \(m \cdot n \)-polygon

The results of this section are discrete counterparts of theorems presented in papers [1,3,4].

In the section we examine \(m \cdot n \)-polygons represented by the formula
\[(5.8) \quad z_k = \sum_{v=0}^{k} x_v e^{i \frac{2\pi v}{m}}, \]
where \(n \geq 2, \ m \geq 3 \) and a sequence \(x_v \) satisfies the following conditions:

1° \(x_v > 0, \)

2° \(x_{v+m} = x_v, \quad v = 0,1, \ldots, \)

3° \(x_v + x_{v+n} + x_{v+2n} + \ldots + x_{v+(m-1)n} = c, \quad v = 0,1, \ldots, \)

4° \(a_1 = b_1 = 0. \)

We consider an \(m \)-polygon b-circumscribed on an \(m \cdot n \)-polygon. For a fixed integer \(k \) we draw bisectors of outside angles in vertices
\[z_k, z_{k+n}, z_{k+2n}, \ldots, z_{k+(m-1)n}. \]

This \(m \)-polygon b-circumscribed on \(m \cdot n \)-polygon has vertices defined as a point of intersection of two successive bisectors passing through vertices \(z_{k+jn}, z_{k+(j+1)n} \).

Keeping notions as before we show

Theorem 5.1 All \(m \)-polygons b-circumscribed on an \(m \cdot n \)-polygon have the same perimeter whenever the sequence \(x_v \) satisfies conditions 1° – 4°.

Proof. To prove the theorem we denote vectors parallel to bisectors of inside and outside angels at vertex \(z_k \) of the polygon by \(N_k \) and \(T_k \), respectively. Applying Fig.3 we easily observe that
\[T_k = e^{i \frac{2\pi k}{m}} e^{i \frac{2\pi n}{m}} = e^{i \frac{2\pi k}{m}} \text{ and } N_k = iT_k. \]

To compute the perimeter of b-circumscribed \(m \)-polygon we use the following vectors
\[T_{k+jn} = e^{i \frac{2\pi k}{m}} T_k, \quad \text{and} \quad N_{k+jn} = iT_{k+jn}, j = 1,2, \ldots m-1, \]
where \(\varepsilon = \cos \frac{2\pi}{m} + i \sin \frac{2\pi}{m} \). Next we solve the following system of equations
\[z_{k+jn} + \xi_{k+jn} \varepsilon e^{i \frac{2\pi k}{m}} T_k = z_{k+(j+1)n} + \eta_{k+jn} \varepsilon e^{i \frac{2\pi k}{m}} T_k, \quad j = 0,1,2, \ldots m-1. \]

The geometrical meaning of the above-mentioned equations is illustrated in Fig.3
Solving these equations we obtain
\[
\eta_{k+j} = \frac{[z_{k+j+n} - z_{k+j}, \epsilon^j T_k]}{\sin \frac{2\pi m}{m}}, \quad \xi_{k+j} = \frac{[z_{k+j+n} - z_{k+j}, \epsilon^{j+1} T_k]}{\sin \frac{2\pi m}{m}}.
\]
Let \(L_k \) denote a perimeter of b-circumscribed \(m \)-polygon. The Fig.3 suggests that
\[
L_k = \sum_{v}^{m-1} (\xi_{k+v} - \eta_{k+v}).
\]
Inserting all formulas on \(\xi_{\theta}, \eta_{\theta} \) we obtain
\[
L_k = \frac{1}{\sin \frac{2\pi m}{m}} \sum_{v=0}^{m-1} ([z_{k+(v+1)n} - z_{k+v}, \epsilon^{v+1} T_k] - [z_{k+(v+1)n} - z_{k+v}, \epsilon^v T_k]) =
\]
\[
\begin{align*}
&= \frac{1}{\sin \frac{\pi}{m}} \sum_{v=0}^{m-1} \left([e^{\frac{im}{m}}(z_{k+(v+1)n} - z_{k+vn}), T_k] - [e^{\frac{i(m-v)}{m}}(z_{k+(v+1)n} - z_{k+vn}), T_k] \right) = \\
&= \frac{1}{\sin \frac{\pi}{m}} \left[(2 - \varepsilon - \frac{1}{\varepsilon}) \sum_{v=0}^{m-1} e^{\frac{i(m-v)}{m}} z_{k+vn}, T_k \right],
\end{align*}
\]

but \(2 - \varepsilon - \frac{1}{\varepsilon} = 2 - 2\text{Re}(\varepsilon) = 4\sin^2 \frac{\pi}{m}\). Hence putting

\[p_k = \sum_{v=0}^{m-1} e^{\frac{i(m-v)}{m}} z_{k+vn}\]

we express \(L_k\) as follows

\[L_k = 2[p_k, T_k] \tan \frac{\pi}{m}\]

Now introducing notions \(d_k = [p_k, T_k]\) and \(D_k = [p_k, N_k]\) we express vector \(p_k\) as follows

\[p_k = D_k T_k - d_k N_k\]

In conclusion we show that discrete Fourier sums of sequences \(d_k\) and \(D_k\) have the form

\[d_k = [p_k, T_k] = \left[\sum_{j=0}^{m-1} e^{-j} \sum_{v=0}^{n-1} x_v e^{i \frac{2\pi}{mn} (v-1)}, e^{i \frac{2\pi}{mn} j} \right] = \]

\[= \sum_{j=0}^{m-1} \sum_{v=0}^{n-1} x_v \sin \frac{(2k + 1 - 2v + 2jn)\pi}{mn} = \]

\[= \sum_{j=0}^{m-1} \sum_{v=0}^{n-1} \left(a_0 + \sum_{l=1}^{m-1} \sum_{s=1}^{m-1} a_{ml+s} \cos \frac{2\pi(ml + s)v}{mn} + \\
+ b_{ml+s} \sin \frac{2\pi(ml + s)v}{mn} \right) \sin \frac{(2k - 2v + 1 + jn)\pi}{mn} = \]

\[a_0 \sum_{j=0}^{m-1} \sum_{v=0}^{n-1} \sin \frac{(2k - 2v + 2n j + 1)\pi}{mn} + \]

\[+ \sum_{l=1}^{m-1} \sum_{s=1}^{m-1} a_{ml+s} \sum_{j=0}^{m-1} \sum_{v=0}^{n-1} \cos \frac{2\pi(ml + s)v}{mn} \sin \frac{(2k - 2v + 2n j + 1)\pi}{mn} + \]

\[+ \sum_{l=1}^{m-1} \sum_{s=1}^{m-1} b_{ml+s} \sum_{j=0}^{m-1} \sum_{v=0}^{n-1} \sin \frac{2\pi(ml + s)v}{mn} \sin \frac{(2k - 2v + 2n j + 1)\pi}{mn} = \frac{ma_0}{2\sin \frac{\pi}{mn}}.\]

Similarly we compute that \(D_k = 0\). Hence we finally obtain

\[L_k = 2[p_k, T_k] \tan \frac{\pi}{m} = 2 \frac{ma_0}{2\sin \frac{\pi}{mn}} \tan \frac{\pi}{m}.\]

This means that all b-circumscribed m-polygons have the same perimeter independent of index \(k\).
Moreover we observe that every vector \(\mathbf{p}_k = -d_k \mathbf{n}_k \) has the same length equal to \(\frac{m a_0}{2 \sin \frac{x}{mm}} \). We put \(d = |\mathbf{p}_k| \), then we express perimeter \(L \) of \(mn \)-polygon with a constant perimeter of \(b \)-circumscribed \(m \)-polygon by the following relation

\[
L = \frac{2\pi}{m} \left(\frac{\sin \frac{x}{mm}}{x} \right) d,
\]

because \(mnL = x_0 + x_1 + \ldots + x_{mn-1} \). Tending to infinity with \(n \) we obtain

\[
L = \frac{2\pi d}{m}.
\]

Formula (5.9) is a discrete counterpart of Th.1.[3] and becomes formula (1.4) for \(m = 2 \). To define an \(mn \)-polygon with a constant perimeter of a \(b \)-circumscribed \(m \)-polygon we apply a \(2\pi \)-periodic positive function \(f \) such that

\[
\sum_{v=0}^{m-1} f(t + v \frac{2\pi}{mn}) = C.
\]

We assume that function \(f \) has uniformly convergent Fourier series and this series has a form

\[
f(t) = \frac{1}{2} A_0 + \sum_{i=1}^{\infty} [A_i \cos(lt) + B_i \sin(lt)],
\]

where \(A_{m,j} = B_{m,j} = 0, \quad j = 1, 2, \ldots \) see [4,1]. Putting

\[
x_v = f(t + \frac{2\pi v}{mn}), \quad v = 0, 1, \ldots
\]

we obtain (for a fixed variable \(t \)) a sequence which satisfies conditions \(1^o-4^o \). Therefore a \(mn \)-polygon represented by equation

\[
z_k = \sum_{v=0}^{k} x_v e^{i \frac{2\pi v}{mn}}
\]

has the constant perimeter of each \(m \)-polygon \(b \)-circumscribed on it.

5.1 On an oval with constant perimeter of a circumscribed \(m \)-polygon and on an \(mn \)-polygon

In subsection 4.1 we proved that every \(2n \)-polygon circumscribed on an oval with constant width \(d \) is the polygon with a constant diagonal equal to \(\frac{d}{\cos \frac{x}{2n}} \). In this subsection we prove Theorem 1.2, i.e.:

All \(m \)-polygons \(b \)-circumscribed on an \(mn \)-polygon which is circumscribed on an oval with a constant perimeter of a circumscribed \(m \)-polygon have the same perimeter equal to
\[
\frac{l}{m} \cos \frac{\pi}{mn},
\]
where \(l \) denotes the length of \(m \)-polygon circumscribed on this oval.

Proof. We keep notion as before. Let \(z(s) \) be an oval with a constant perimeter of a circumscribed \(m \)-polygon. Putting \(\varphi(s) = K^{-1}(K(s) + \frac{2\pi}{mn}) \) we easy observe that \(\varphi^{mn}(s) = s + L \) and that \(mn \)-polygon circumscribed on the oval is tangent (to the oval) at points \(z(\varphi^v(s)) \), \(v = 0, 1, 2, \ldots \). Then vertices of an \(mn \)-polygon circumscribed on the oval are expressed as follows:

\[
z(\varphi^v(s)) + \xi_v T_{\varphi^v(s)}, \quad v = 0, 1, 2, \ldots,
\]

where

\[
\xi = -D_v - d_v \cot \frac{2\pi}{mn}, \quad D_v = [z(\varphi^v(s)) - z(\varphi^{v+1}(s)), N_{\varphi^v(s)}]
\]

and \(d_v = [z(\varphi^v(s)) - z(\varphi^{v+1}(s)), T_{\varphi^v(s)}] \). Now we consider \(m \)-polygon b-circumscribed on \(mn \)-polygon, see Fig.4.

![Fig.4. m-polygon b-circumscribed on mn-polygon which is circumscribed on the oval.](Image)

We denote by \(T_{k+j} \) the tangent vector at point \(z(\varphi^{k+j}\nu(s)) \) for fixed \(k \) and \(j = 0, 1, \ldots, m - 1 \). To compute the perimeter of \(m \)-polygon b-circumscribed on \(mn \)-polygon we solve the following system of equations (Fig.3 and Fig.4):

\[
z(\varphi^{k+j}\nu(s)) + \xi_{k+j} T_{k+j} + \xi_{k+j+1} \mu_{k+j} e^{i \frac{\pi}{mn}} =
\]

\[
z(\varphi^{k+(j+1)}\nu(s)) + \xi_{k+(j+1)} T_{k+(j+1)} + \eta_{k+(j+1)} e^{i \frac{\pi}{mn}},
\]

where \(j = 0, 1, \ldots, m - 1 \).

Moreover the length of sectors \(|z(\varphi^{k+j}\nu(s))A_{k+j}| \) and \(|z(\varphi^{k+(j+1)}\nu(s))A_{k+(j+1)}| \) is denoted by \(\xi_{k+j} \) and \(\xi_{k+(j+1)} \), respectively. The length of sectors \(|A_{k+j}B_{k+j}| \) and \(|B_{k+j}A_{k+(j+1)}| \) is denoted by \(\eta_{k+j} \) and \(\eta_{k+(j+1)} \), respectively. Moreover vectors \(T_{k+j} e^{i \frac{\pi}{mn}} \) and \(T_{k+(j+1)} e^{i \frac{\pi}{mn}} \) are parallel to bisectrices of outside angles of \(mn \)-polygon. Obviously perimeter \(l_k \) of \(m \)-polygon b-circumscribed on \(mn \)-polygon is equal to
\[I_k = \sum_{j=0}^{m-1} (\xi_{k+jn}^1 - \eta_{k+jn}^1). \]

At first we compute \(\xi_{k+jn}^1 \)
\[
\xi_{k+jn}^1 = \frac{1}{-T_{k+jn} e^{i \frac{\pi}{nm}}, T_{k+(j+1)n} e^{i \frac{\pi}{nm}}} \left(z(\varphi^{k+jn}(s)) - z(\varphi^{k+(j+1)n}(s)), T_{k+(j+1)n} e^{i \frac{\pi}{nn}} \right) +
\]
\[
+ [\xi_{k+jn} T_{k+jn} - \xi_{k+(j+1)n} T_{k+(j+1)n}, T_{k+(j+1)n} e^{i \frac{\pi}{nn}}] =
\]
\[
= \frac{1}{\sin \frac{\pi}{mm}} \left(z(\varphi^{k+jn}(s)) - z(\varphi^{k+(j+1)n}(s)), T_{k+(j+1)n} e^{i \frac{\pi}{mm}} \right) +
\]
\[
+ \xi_{k+jn} \sin \frac{(2n + 1)\pi}{mm} - \xi_{k+(j+1)n} \sin \frac{\pi}{mm} \right)
\]

and
\[
\eta_{k+jn}^1 = \frac{1}{\sin \frac{2\pi}{mm}} \left(z(\varphi^{k+jn}(s)) - z(\varphi^{k+(j+1)n}(s)), T_{k+(j+1)n} e^{i \frac{\pi}{mm}} \right) +
\]
\[
+ \xi_{k+jn} \sin \frac{\pi}{mm} + \xi_{k+(j+1)n} \sin \frac{(2n - 1)\pi}{mm} \right).
\]

Inserting relation \(T_{k+jn} = \varepsilon^j T_k, \quad \varepsilon^m = 1, \varepsilon \neq 1 \) we obtain
\[
W = \sum_{j=0}^{m-1} \left(z(\varphi^{k+jn}(s)) - z(\varphi^{k+(j+1)n}(s)), T_{k+(j+1)n} e^{i \frac{\pi}{mm}} \right) +
\]
\[
+ \sum_{j=0}^{m-1} [z(\varphi^{k+jn}(s)) - z(\varphi^{k+(j+1)n}(s)), T_{k+(j+1)n} e^{i \frac{\pi}{mm}}] =
\]
\[
= [\varepsilon p_k - p_k - p_k + \varepsilon p_k, T_k e^{i \frac{\pi}{mm}}],
\]

where
\[
p_k = \sum_{j=0}^{m-1} \varepsilon^{m-j} z(\varphi^{k+jn}(s)).
\]

By (3.1)[4,p.374] \(p_k = -dN_k \) (where \(d \) denotes \(n \)-width of the oval) we obtain
\[
W = (\varepsilon + \varepsilon - 2)[p_k, T_k e^{i \frac{\pi}{mm}}] = -4d \sin^2 \frac{\pi}{m} \cos \frac{\pi}{mn}.
\]

It is easy to observe that
\[
\sum_{j=0}^{m-1} \xi_{k+jn} = \sum_{j=0}^{m-1} \xi_{k+(j+1)n}.
\]

The sum
\[
\sum_{j=0}^{m-1} \xi_{k+jn}
\]

is equal to
\[
\sum_{j=0}^{m-1} \xi_{k+jn} = - \sum_{j=0}^{m-1} ([z(\varphi^{k+jn}(s)) - z(\varphi^{k+jn+1}(s)), N_{k+jn}] + \\
+z(\varphi^{k+jn}(s)) - z(\varphi^{k+jn+1}(s)), T_{k+jn}]) \cot \frac{2\pi}{mn} = \\
= - \sum_{j=0}^{m-1} ([e^{m-j}z(\varphi^{k+jn}(s)) - e^{m-j}z(\varphi^{k+jn+1}(s)), N_{k}] + \\
[e^{m-j}z(\varphi^{k+jn}(s)) - e^{m-j}z(\varphi^{k+jn+1}(s)), T_{k}] \cot \frac{2\pi}{mn}) = \\
= -(\{p_k - p_{k+1}, N_k\} + [p_k - p_{k+1}, T_k] \cot \frac{2\pi}{mn} = \\
= d(\sin \frac{2\pi}{mn} - \tan \frac{\pi}{mm} \cos \frac{2\pi}{mn}).
\]

Finally we obtain perimeter \(l_k \) as the following expression

\[
l_k = \frac{-4d \sin^2 \frac{\pi}{m} \cos \frac{\pi}{mm}}{-\sin \frac{2\pi}{m}} + \\
+ \frac{1}{-\sin \frac{2\pi}{m}} \left(\sum_{j=0}^{m-1} \xi_{k+jn} (\sin \frac{(2n+1)\pi}{mn} - \sin \frac{\pi}{mn}) \right) + \\
+ \sum_{j=0}^{m-1} \xi_{k+(j+1)n} (-\sin \frac{\pi}{mm} - \sin \frac{(2n-1)}{mn}) = \\
= 2d \tan \frac{\pi}{m} (\cos \frac{\pi}{mm} + \sin \frac{\pi}{mm} (\sin \frac{2\pi}{mm} - \tan \frac{\pi}{mm} \cos \frac{2\pi}{mn})) = \\
= 2d \tan \frac{\pi}{m} \frac{1}{\cos \frac{\pi}{mn}}.
\]

But by [4, p. 373] \(l = 2d \tan \frac{\pi}{m} \) is equal to the perimeter of \(m \)-polygon circumscribed on an oval. Therefore

\[
l_k = \frac{l}{\cos \frac{\pi}{mm}}.
\]

This means that all \(m \)-polygons b-circumscribed on \(mn \)-polygon have the same perimeter. Moreover if \(n \) tends to infinity then perimeter \(l_k \) tends to the perimeter of \(m \)-polygon circumscribed on an oval. \(\square \)
References

Stanisław Góźdź
UMCS Institute of Mathematics
pl.M.Curie-Skłodowskiej 1
20-031 Lublin, Poland
gozd@golem.umcs.lublin.pl