Classification of Locally Symmetric Contact Metric Manifolds

Anna Maria Pastore

Abstract

We complete the classification of 5-dimensional locally symmetric contact metric manifolds stated by D. Blair and J.M. Sierra. Furthermore, in general dimension we prove the existence of a foliation with totally geodesic leaves locally isometric to a Riemannian product $E^{m+1} \times S^n(4)$.

Mathematics Subject Classification: 53C15, 53C35
Key Words: contact metric manifolds; locally symmetric spaces

Introduction

In [6], Z. Olszak proved that for dimensions $2n + 1 \geq 5$ there are not contact metric manifolds of constant curvature unless the constant is 1 and in this case the structure is Sasakian. On the other hand, in [7], S. Tanno proved that a locally symmetric K-contact manifold is of constant curvature. Motivated by these results, D. Blair and J.M. Sierra proposed the question of classifying locally symmetric contact manifolds, and in [5] they studied the 5-dimensional case, proving the following theorem.

Theorem. Let M be a complete 5-dimensional locally symmetric contact metric manifold. Then the simply-connected covering space is either $S^5(1)$ or $E^3 \times S^2(4)$ or $H^2(k_1) \times H^2(k_2) \times R$, where $H^2(k_i)$, $i = 1, 2$ is the hyperbolic plane with constant negative curvature k_i.

However, whereas $S^5(1)$ and $E^3 \times S^2(4)$ admit such a structure ([2], [3]), the problem of the existence in the third case remained still open. We recall also that the 3-dimensional case has been studied in [4] by Blair and Sharma who proved that a 3-dimensional locally symmetric contact metric manifold is of constant curvature $+1$ or 0.

In this paper we prove that the third possibility in the theorem of Blair and Sierra has to be removed. Moreover, in the general case, we prove that a locally symmetric contact metric manifold M^{2n+1}, $2n + 1 > 5$, admits a foliation whose leaves are totally geodesic and locally isometric to the Riemannian product $E^{m+1} \times S^n(4)$, for a suitable m.

©Balkan Society of Geometers, Geometry Balkan Press
1 Preliminaries

We recall some results on contact metric manifolds and for more details we refer to [1],[3],[5].

A contact metric manifold M^{2n+1} is a C^∞-manifold with a global 1-form η such that $\eta \wedge (d\eta)^n \neq 0$. It is well known that there exists a unique vector field ξ on M^{2n+1} satisfying $\eta(\xi) = 1$ and $d\eta(\xi, X) = 0$. A manifold M^{2n+1} is said to be a contact metric manifold if it admits a contact metric structure (φ, ξ, η, g), where φ is a tensor field of type $(1, 1)$ and g is an associated metric such that

$$\varphi^2 = -I + \eta \otimes \xi, \quad g(X, \xi) = \eta(X), \quad d\eta(X, Y) = g(X, \varphi(Y)).$$

Denoting by L the Lie-derivation operator, the tensor field $h = \frac{1}{2}L_\xi \varphi$ is a symmetric operator which anticommutes with φ. Obviously, $h(\xi) = 0$ and if λ is an eigenvalue of h with eigenvector X, then $-\lambda$ is an eigenvalue with eigenvector $\varphi(X)$. Moreover, we have $h = 0$ if and only if ξ is a Killing vector field and in this case M^{2n+1} is called a K-manifold.

We have the following formulas, for any vector field X on M^{2n+1}:

1. $$\nabla_X \xi = -\varphi(X) - \varphi h(X)$$

2. $$\frac{1}{2}(R_{\xi X} \xi - \varphi R_{\xi \varphi(X) \xi}) = h^2(X) + \varphi^2(X)$$

3. $$(\nabla_\xi h)(X) = \varphi(X) - h^2 \varphi(X) - \varphi R_{\xi X} \xi,$$

where ∇ is the Levi-Civita connection and R its curvature tensor field, [5]. Furthermore, in [2], the following theorem is proved.

Theorem B. Let M^{2n+1} be a contact metric manifold and suppose that $R(X, Y) \xi = 0$ for all vector fields X and Y. Then M^{2n+1} is locally the product of a flat $(n + 1)$-dimensional manifold and an n-dimensional manifold of positive constant curvature 4.

Finally, supposing that M^{2n+1} is a locally symmetric contact metric manifold we have $\nabla_\xi h = 0$, [3]. Consequently, (3) gives

4. $$R_{\xi X} \xi = -X + \eta(X) \xi + h^2(X)$$

and the following formulas hold for all orthogonal to ξ unit eigenvectors X, Y of h with eigenvalues λ, μ respectively, ([5] lemma 3.3):

5. $$(\lambda^2 - \mu^2)g(\nabla_\varphi X, Y) = (1 - \lambda)[(1 - \lambda)g(\nabla X \varphi X, Y) - 2\lambda g(\nabla_X \varphi X + (1 + \mu)g(\nabla_X \varphi X, \varphi Y)]$$

and

6. $$(\varphi Y)(\lambda^2) = 2(X \mu)(1 - \mu)g(\varphi Y, X) + 2(1 - \mu^2)g(\nabla_X \varphi Y, X) + 2(1 - \lambda - \mu + \lambda \mu)g(\nabla_X \varphi Y, \varphi X) + 4\lambda(1 - \mu)g(\nabla_X \varphi Y, \varphi X)$$
2 The five-dimensional case

Let M^5 be a locally symmetric contact metric manifold. If the tensor field h vanishes, then M^5 is a K-manifold of constant curvature $+1$ and it is realized by $S^5(1)$ with the standard Sasakian structure, [6], [7].

Now, suppose that $h \neq 0$. As discussed in section 4 of [5], for any $p \in M^5$ there exists a unit vector $X \in T_p(M^5)$ such that $g(X, \xi) = 0$ and $R_{X\xi} \xi = 0$. Using (4), we have

\begin{equation}
 h^2(X) - X = 0
\end{equation}

and since $h(\xi) = 0$, the spectrum of the operator h is given by $\{0, \lambda, -\lambda, \mu, -\mu\}$. We suppose $\lambda \geq 0$, $\mu \geq 0$ and we denote by $\{\xi, e_1, e_2, e_3, e_4\}$ the set of the corresponding eigenvectors. Writing $X = \sum_{i=1}^4 X^i e_i$, and applying (7) we obtain that at least one of λ or μ must be 1, say μ. Moreover, $\phi(e_1) = e_2$, $\phi(e_3) = e_4$ and the eigenvalues are constant along their eigenvectors.

Blair and Sierra distinguished three cases:

i) $\lambda = 1$;

ii) $\lambda = 0$;

iii) $\lambda \neq 0, 1$.

In their proof the first case implies that M^5 is locally isometric to the Riemannian product $E^4 \times S^2(4)$ via theorem B, the second one leads to an empty class and the third one implies the local isometry of M^5 with $H^2(k_1) \times H^2(k_2) \times R$.

Now, we shall prove that the third possibility has to be excluded, obtaining the following classification theorem.

Theorem 1 Let M be a complete 5-dimensional locally symmetric contact metric manifold. Then the simply-connected covering space is either $S^5(1)$ or $E^5 \times S^2(4)$.

Proof. Let us suppose $\lambda \neq 0, 1$. In this hypothesis, Blair and Sierra proved the following results:

a) The distribution $ [+1] \bigoplus [-1] \bigoplus [\xi]$ is integrable with flat totally geodesic leaves. Here, $[+1]$ and $[-1]$ denote respectively the eigenspaces related to the eigenvalues $+1$ and -1 and $[\xi]$ is the distribution spanned by ξ.

b) The Levi-Civita connection satisfies the following relations:
\(\nabla \xi = 0 \quad \nabla e_4 = 0 \)

\(\nabla e_1 = -\beta'_1 e_3 \quad \nabla e_2 = -\gamma'_1 e_3 - \gamma_1 e_4 + (1 + \lambda) \xi \)

\(\nabla e_3 = \beta'_1 e_1 + \gamma'_1 e_2 \quad \nabla e_4 = \gamma_1 e_2 \)

\(\nabla e_1 \xi = (1 - \lambda) e_2 \quad \nabla e_2 \xi = -\beta'_2 e_3 - \beta_2 e_4 - (1 - \lambda) \xi \)

\(\nabla e_3 e_2 = -\gamma'_2 e_3 \quad \nabla e_3 e_3 = \beta'_2 e_1 + \gamma'_2 e_2 \)

\(\nabla e_2 e_4 = \beta_2 e_1 \quad \nabla e_3 \xi = (1 - \lambda) e_1 \)

\(\nabla e_3 e_1 = \alpha_3 e_2 \quad \nabla e_3 e_2 = -\alpha_3 e_1 \)

\(\nabla e_3 e_3 = 0 \quad \nabla e_3 e_4 = 2 \xi \)

where \(\beta_2 = \frac{1 - \lambda}{1 + \lambda} \gamma_1 \), \(\lambda \alpha_3 = -\gamma'_1 \), \(\xi(\alpha_3) = 0 \).

c) \(R_{e_1 e_2 \xi} = -((1 + \lambda) \gamma'_2 + (1 - \lambda) \beta'_1) e_3 \).

d) The eigenvalue \(\lambda \) must be a non constant function, and \(\xi(\lambda) = 0 \), \(e_4(\lambda) = 0 \).

First at all, we deduce some other formulas. Taking \(Y = e_4 \) and \(X = e_i, i = 1, 2 \) in (6) we get

\(-e_3 (\lambda^2) = 4(1 - \lambda) g(\nabla e_1, e_4, e_2) + 8 \lambda g(\nabla e_4, e_1, e_2) \)

Then, using b), we obtain \(-e_3 (\lambda^2) = 4(1 - \lambda)\gamma_1 \) and

\(e_3(\lambda) = -2 \frac{1 - \lambda}{\lambda} \gamma_1. \)

Now, condition d) implies \(\gamma_1 \neq 0 \) and applying the first Bianchi identity to \(e_1, e_3, \xi \) and using \(R_{e_3 \xi} = 0 \) we obtain:

\(-2 \gamma_1 + e_3 (\lambda) + (1 + \lambda)(\beta'_1 - \gamma'_2) = 0 \)

Again, using \(R_{e_3 \xi} = 0 \) and c) we find:

\(\gamma'_2 = -\frac{1 - \lambda}{1 + \lambda} \beta'_1 \)

and substituting (8) , (10) in (9) , we get

\(\beta'_1 = \frac{1}{\lambda} \gamma_1. \)

Finally, by direct computation, we have

\(g(R_{e_1 e_2 e_1, e_2}) = - (\gamma'_1)^2 - \frac{(1 - \lambda)^2}{\lambda^2} (\gamma_1)^2 + 1 - \lambda^2. \)
Now, we suppose that \(M^5 = H^2(k_1) \times H^2(k_2) \times R \) and recall that a) holds. Obviously, \(\xi \) has non zero component tangent to \(H^2(k_1) \times H^2(k_2) \), otherwise we have \(R_{XY} \xi = 0 \) for all \(X, Y \) and \(\lambda = 1 \). Moreover, since the foliation spanned by \(\{v_3, v_4, \xi\} \) induces foliations by geodesics on each \(H^2(k_i) \), we can consider \((f_1, f_2) \) orthonormal vectors tangent to \(H^2(k_1) \), and \((f_3, f_4) \) orthonormal vectors tangent to \(H^2(k_2) \) such that \(\{f_2, f_4, f_5\} \) span the distribution \(\{+1\} \oplus \{-1\} \oplus \{\xi\} \). It follows that \(e_1 \) and \(e_2 \) belong to the \(\text{span}\{f_1, f_3\} \) and, since the sectional curvature \(K(\{f_1, f_3\}) = 0 \), we have \(K(\{e_1, e_2\}) = 0 \) and (11) implies

\[
1 - \lambda^2 = (\gamma_1)^2 + \frac{(1 - \lambda)^2}{\lambda^2}(\gamma_1)^2 > 0.
\]

On the other hand, writing \(\xi = af_2 + bf_4 + cf_5 \) and using (4) we obtain \(R_{f_1} \xi = (1 - \lambda^2)f_1 \), whereas using the sectional curvature, we get \(R_{f_1} \xi = a^2k_1 \) so that

\[
1 - \lambda^2 = a^2k_1.
\]

We conclude that \(1 - \lambda^2 < 0 \), contradicting (12).

3 Some results in the higher dimensional case

Let \(M^{2n+1} \) be a locally symmetric contact metric manifold and suppose that \(h \neq 0 \). Arguing as at the beginning of section 2, we consider the set

\[
\{0, +1, -1, \lambda_1, -\lambda_1, \ldots, \lambda_r, -\lambda_r\}
\]

of the distinct eigenvalues of \(h \) such that \(\text{dim}\{0\} = p + 1, \text{dim}\{+1\} = m, \text{dim}\{\lambda_1\} = m_1, \ldots, \text{dim}\{\lambda_r\} = m_r \) and \(2n + 1 = p + 1 + 2m + 2m_1 + \ldots + 2m_r \).

Here \([\lambda] \) denotes the eigenspace corresponding to the eigenvalue \(\lambda \).

Theorem 2 Let \(M^{2n+1}, 2n + 1 > 5, \) be a locally symmetric contact metric manifold and suppose that the spectrum of \(h \) is given by the set \(\{0, +1, -1\} \) with \(+1 \) and \(-1 \) as eigenvalues of multiplicity \(n \) and 0 as simple eigenvalue. Then \(M^{2n+1} \) is locally isometric to the Riemannian product \(E^{2n+1} \times S^n(4) \).

Proof. By means of (4), we get \(R_{X} \xi = 0 \) for any eigenvector \(X \in \{\pm 1\} \). Consequently, the sectional curvatures of the tangent 2-planes containing \(\xi \) vanish.

If \(M^{2n+1} \) is irreducible, it is Einstein with \(\text{Ric}(\xi, \xi) = 2n - tr(h^2) = 0 \) and consequently it is Ricci-flat and then flat, contradicting the result of Olszak in [6]. Hence, \(M^{2n+1} \) is reducible and the vanishing of the \(\xi \)-curvatures implies that \(\xi \) has to be tangent to a flat factor. It follows that \(R_{XY} \xi = 0 \) for all tangent vectors \(X, Y \) and theorem B applies.

Now, we suppose \(m < n \), we put \([0] = [\xi] \oplus V_0 \) (orthogonal sum), and \(H = [\xi] \oplus [\pm 1] \). To prove that the distribution \(H \) is integrable we need some lemma.

Lemma 1. For any \(X \in H \) we have \([\xi, X] \in H \).

Proof. Clearly, for \(X \in H \) we have:

\[
X \in [+1] \Rightarrow (\nabla_X \xi = -2\varphi X \in [-1], \nabla_\xi X \in [+1])
\]

\[
X \in [-1] \Rightarrow (\nabla_X \xi = 0, \nabla_\xi X \in [-1])
\]
Finally, $\nabla_{\xi} \xi = 0$ and $[X, \xi] \in \{\pm 1\} \subset H$ follows.

Lemma 2. For any X, Y belonging to $[+1]$ we have $\nabla_{\varphi Y} X \in [\pm 1] \subset H$.

Proof. We use the following formula stated as formula (5) in [3]

$$
R_{YX} \xi + R_{X} Y - R_{hX} Y \xi - R_{YX} h Y = g(X, Y) \xi - 2\eta(Y) X + \eta(X) Y
$$

(13)

$$
- g(X, h Y) \xi + 2\eta(Y) h Y
- \eta(X) h Y + (\nabla_{\varphi Y} h^2)(X).
$$

obtaining $(\nabla_{\varphi Y} h^2)(X) = 0$, i.e.,

(14) $\nabla_{\varphi Y} X - h^2 (\nabla_{\varphi Y} X) = 0$

and this implies $\nabla_{\varphi Y} X \in [\pm 1]$. Namely, we decompose $\nabla_{\varphi Y} X$ with respect to the direct sum of the eigenspaces:

(15) $\nabla_{\varphi Y} X = A_0 + A_{+1} + A_{-1} + A_{\lambda_1} + A_{\lambda_2} + \ldots + A_{\lambda_r} + A_{\lambda_{r+1}}$

Then, we have

$$
h^2 (\nabla_{\varphi Y} X) = A_0 + A_{+1} + \lambda_1^2 A_{\lambda_1} + \lambda_2^2 A_{\lambda_2} + \ldots + \lambda_r^2 A_{\lambda_r} + \lambda_{r+1}^2 A_{\lambda_{r+1}}.
$$

Using (14) and (15), we get $A_0 = 0, A_{\lambda_1} = 0, A_{\lambda_2} = 0, \ldots, A_{\lambda_r} = 0, A_{\lambda_{r+1}} = 0$, $\lambda_1, \ldots, \lambda_r$ being different from $+1, -1$. Finally, from (15) we obtain $\nabla_{\varphi Y} X = A_{+1} + A_{-1} \in [\pm 1] \subset H$.

Corollary 1. For any $X \in [-1]$ and $Y \in [+1]$ we have $\nabla_X Y \in [\pm 1]$.

Proof. Apply Lemma 2 to φX and Y.

Lemma 3. For any $Y \in [+1]$ and $X \in [-1]$, we have $\nabla_{\varphi Y} X \in [\pm 1]$.

Proof. From (13), since $g(X, Y) = 0$, we obtain $(\nabla_{\varphi Y} h^2)(X) = 0$ and we continue as in the proof of Lemma 2.

Corollary 2. We have: a) $(X \in [-1], Y \in [-1]) \Rightarrow \nabla_X Y \in [\pm 1]$

b) $X, Y \in [-1] \Rightarrow [X, Y] \in [\pm 1]$

Lemma 4. For any $X \in [-1]$ and $Y \in [-1]$, we have $\nabla_{\varphi Y} X \in H$.

Proof. Using (13) we have:

$$
2R_{XY} \xi + 2R_{\xi X} Y = 2g(X, Y) \xi + (\nabla_{\varphi Y} h^2)(X).
$$

Lemma 1 and Corollary 2 easily imply that $R_{YX} \xi \in [\pm 1]$ and $R_{\xi X} Y \in [\pm 1]$.

It follows

(16) $B = 2g(X, Y) \xi + \nabla_{\varphi Y} X - h^2 (\nabla_{\varphi Y} X) \in [\pm 1]$

On the other hand, decomposing $\nabla_{\varphi Y} X$ as in (15) and computing $h^2 (\nabla_{\varphi Y} X)$, we get
\begin{equation}
B = 2g(X, Y)\xi + A_0 + (1 - \lambda_1^2)A_{\lambda_1} + (1 - \lambda_r^2)A_{\lambda_r} + (1 - \lambda_{r+1}^2)A_{\lambda_{r+1}} + \ldots
\end{equation}

Comparing (16) and (17) we conclude

\[A_0 = -2g(X, Y)\xi, A_{\lambda_1} = 0, A_{\lambda_1} = 0, \ldots, A_{\lambda_r} = 0, A_{\lambda_r} = 0 \]

so that

\[\nabla_{\psi} X = -2g(X, Y)\xi + A_{\lambda_1} + A_{\lambda_1} \in H. \]

Corollary 3. \((X \in [+1], Y \in [-1]) \Rightarrow (\nabla_X Y \in H, [X, Y] \in H). \)

Lemma 5. For any \(Y \in [-1] \) and \(X \in [+1] \) we have \(\nabla_{\psi} Y X \in [\pm 1] \).

Proof. Using (13), since \(g(X, Y) = 0 \), we get

\[2R_{XY} \xi + 2R_{\xi X} Y = (\nabla_{\psi} Y h^2)(X) \]

Now, Lemma 1 and the previous corollaries easily imply that \(R_{XY} \xi \in [\pm 1] \) and \(R_{\xi X} Y \in H \), so that

\begin{equation}
\nabla_{\psi} Y X = h^2(\nabla_{\psi} Y X) \in H.
\end{equation}

Again, decomposing \(\nabla_{\psi} Y X \) with respect to the direct sum of eigenspaces, (18) implies \(A_0 = a_{\xi}, A_{\lambda_1} = 0, \ldots, A_{\lambda_r} = 0 \), so that we have

\[\nabla_{\psi} Y X = a_{\xi} + A_{\lambda_1} + A_{\lambda_1} \]

Now, since \(\psi Y \in [+1] \), we get \(g(\nabla_{\psi} Y X, \xi) = -g(X, \nabla_{\psi} Y \xi) = -2g(x, \psi^2 Y) = 2g(X, Y) = 0 \) and \(\nabla_{\psi} Y X \in [\pm 1] \).

Corollary 4. \((X \in [+1], Y \in [+1]) \Rightarrow (\nabla_X Y \in [\pm 1], [X, Y] \in [\pm 1]. \)

Proposition 4.1. The distribution \(H = [\xi] \oplus [\pm 1] \) is integrable with totally geodesic leaves.

Proof. The previous lemma and corollaries imply that \([X, Y] \in H \) for any \(X \in H \) and \(Y \in H \). Thus the distribution \(H \) is involutive and integrable.

Let \(N \) be a maximal integral submanifold. Since \(\nabla_X Y \) is tangent to \(N \) for any vector fields \(X, Y \) tangent to \(N \), the second fundamental form vanishes and \(N \) is totally geodesic.

Proposition 4.2. The integral manifolds of the distribution \(H \) are locally isometric to the Riemannian product \(F^{m+1} \times S^n \).

Proof. Let \(N \) be an integral manifold of \(H \), a local frame for \(TN \) is given by \(\xi \) and the eigenvectors \(\{ e_i, \psi e_i \}, \quad i \in \{ 1, \ldots, m \} \) corresponding to the eigenvalues \(+1, -1\), and \(N \) has a canonically induced contact metric structure \((\xi, \psi, g) \) where \(\psi \) is the restriction of \(\varphi \) to \(N \). Moreover, \(N \) turns out to be locally symmetric since it is totally geodesic in the locally symmetric manifold \(M^{2m+1} \). It is easy to verify that \(h' = \frac{1}{2} L_\xi \varphi' \) is the restriction of \(h \) to \(N \). Now, \(h' \) has eigenvalues \(+1, -1\) with multiplicity \(m \) and \(0 \).
as a simple eigenvalue. Theorem 2 insures that N is locally isometric to $E^{m+1} \times S^m(4)$. Hence, we can conclude with the following theorem:

Theorem 3 Let M^{2n+1} be a locally symmetric contact metric manifold. Then M^{2n+1} admits a foliation whose leaves are totally geodesic and locally isometric to the Riemannian product $E^{m+1} \times S^m(4)$. The integer m is the multiplicity of the eigenvalue $+1$ of the operator $\frac{1}{2}L_{\xi}\varphi$.

References

Dipartimento Interuniversitario di Matematica
Università di Bari, via Orabona, 4
70125 Bari, Italy

e-mail Pastore@pascal.dm.uniba.it