Hemirings, Congruences and the Hewitt Realcompactification

S.K. Acharyya K.C. Chattopadhyay G.G. Ray*

Abstract
The present paper indicates a method of obtaining the Hewitt realcompactification vX of a Tychonoff space X, by considering a distinguished family of maximal regular congruences, viz., those which are real, on the hemiring $C_+(X)$ of all the non-negative real valued continuous functions on X.

1. Introduction
The structure space $W(R)$ of a hemiring R, as the set of all maximal regular congruences on R equipped with the hull-kernel topology, has been introduced in 1990 by Sen and Bandyopadhyay [5], who have shown that $W(R)$ is a T_1 topological space and it is T_2 only under certain restrictions. In a previous paper [1] the present authors proved that in case R contains the identity, $W(R)$ is compact and for any Tychonoff space X, the structure space of the hemiring $C_+(X)$ of all the non-negative real valued continuous functions on X is precisely the Stone-Čech compactifications βX of X. In this paper we have focused our attention on a particular type of congruences, viz., the real maximal regular congruences on $C_+(X)$. Given any maximal regular congruence ρ on $C_+(X)$, we have shown that a partial ordering `\leq' on the quotient hemiring $C_+(X)/\rho$ can be so defined that $C_+(X)/\rho$ becomes a totally ordered hemiring, which further contains an order isomorphic copy of the hemiring \mathbb{R}_+ via a canonical map. ρ is called real if $C_+(X)/\rho$ is isomorphic to \mathbb{R}_+, otherwise it is called hyper-real. Next we have shown that a real congruence ρ on $C_+(X)$ is charac-

*Research of the third author is supported by U.G.C., New Delhi
Received by the editors September 1993
Communicated by Y. Félix
AMS Mathematics Subject Classification : Primary 54D60, 54C45, Secondary : 54C30
Keywords : Hemirings, Congruence, Realcompactification, C-embedding.

terized by the property that the set \(\{ \rho(n) : n \in \mathbb{N} \} \) is cofinal in \(C_+(X)/\rho \), where \(\mathbb{N} \) is the set of all natural numbers and for each \(n \) in \(\mathbb{N} \), \(\rho(n) \) denotes the residue class in the hemiring \(C_+(X)/\rho \) which contains the function \(n \) taking value \(n \) constantly on \(X \). This result has further led us to show an intrinsic feature of real congruences on \(C_+(X) \) in terms of their associated \(z \)-filters on \(X \). Using all this result we have finally succeeded in proving that the set of all real maximal regular congruences on \(C_+(X) \) with the hull-kernel topology in \(vX \), the Hewitt realcompactification of \(X \).

2. Partially ordered hemirings

Definition 2.1 Following [4] we define a non-empty set \(R \) with two distinct compositions \(' + ' \) and \(' . ' \) a hemiring, if it satisfies all the axioms of a ring except possibly the one that ensures the existence of additive inverses of the members of \(R \); and which satisfies the additional axiom:

\[
a.0 = 0.a = 0 \quad \forall \ a \in R.
\]

Definition 2.2 Following [5] we define a congruence on a hemiring \(R \) to be an equivalence relation \(\rho \) on \(R \) which satisfies the following conditions:

\[
\forall x, y, z \in R, (x, y) \in \rho \Rightarrow (x + z, y + z) \in \rho,
\]

\[
(x.z, y.z) \in \rho \quad \text{and} \quad (z.x, z.y) \in \rho.
\]

The congruence \(\rho \) is called cancellative if,

\[
\forall \ x, y, z \in R, (x + z, y + z) \in \rho \Rightarrow (x, y) \in \rho.
\]

A cancellative congruence \(\rho \) on a hemiring \(R \) is called regular if there exist elements \(e_1, e_2 \) in \(R \) such that

\[
\forall a \in R, (a + e_1.a, e_2.a) \in \rho \quad \text{and} \quad (a + a.e_1, a.e_2) \in \rho.
\]

Evidently each cancellative congruence on a hemiring with unity 1 is regular.

For details of these concepts we refer to [4] and [5]. For further results and notations regarding residue classes of a hemiring modulo maximal regular congruences we refer to [1] because they will frequently be used in this article.

Definition 2.3 A hemiring \((H, +, .)\) equipped with a partial order \(' \leq ' \) is called a partially ordered hemiring if the following conditions are satisfied: \(\forall a, b, c, d \in H \)

1. \(a \leq b \iff a + c \leq b + c \)

2. \(a \leq c \text{ and } b \leq d \Rightarrow a.d + c.b \leq a.b + c.d \).
Definition 2.4 A congruence ρ on a partially hemiring H is called convex if for all a, b, c, d in H,

$$(a, b) \in \rho \text{ and } a \leq c \leq d \leq b \Rightarrow (c, d) \in \rho.$$

The following tells precisely when the residue class hemiring of a partially ordered hemiring modulo a regular congruence on it can be partially ordered in some natural way.

Theorem 2.5 Let H be a partially ordered hemiring, ρ be a regular congruence on H. In order that H/ρ be a partially ordered hemiring, according to the definition: $\rho(a) \leq \rho(b)$ if and only if there exist x, y in H such that $(x, y) \in \rho$ and $a + x \leq b + y$, it is necessary and sufficient that ρ is convex.

Proof. First assume that ρ is convex. To prove the antisymmetry assume that $\rho(a) \leq \rho(b)$ and $\rho(b) \leq \rho(a)$ where a, b belong to H. Then there exist (x_i, y_i) in ρ, $i = 1, 2$ such that $a + x_1 \leq b + y_1$ and $b + x_2 \leq a + y_2$. This implies that $a + x_1 + x_2 \leq b + y_1 + x_2 \leq a + y_1 + y_2$. Since $(a + x_1 + x_2, a + y_1 + y_2)$ belongs to ρ, in view of the convexity of ρ, we have $(a + x_1 + x_2, b + y_1 + x_2)$ belongs to ρ. Since ρ is cancellative, this implies that $(a + x_1, b + y_1)$ belongs to ρ which gives $(a + x_1, b + x_1 + y_1)$ belongs to ρ and this yields (a, b) belongs to ρ, i.e., $\rho(a) = \rho(b)$. The reflexivity and transitivity of \leq on ρ is trivial and hence their proofs are omitted.

It can easily be verified that for any a, b, c in $H, \rho(a) \leq \rho(b)$ if and only if $\rho(a) + \rho(c) \leq \rho(b) + \rho(c)$. So to complete the proof we need to check only that for a, b, c, d in $H, \rho(a) \leq \rho(c)$ and $\rho(b) \leq \rho(d)$ implies that $\rho(a).\rho(d) + \rho(c).\rho(b)$ \leq $\rho(a).\rho(b) + \rho(c).\rho(d)$. Let us take a, b, c, d in H such that $\rho(a) \leq \rho(c)$ and $\rho(b) \leq \rho(d)$. So there exist $(x_1, y_1), (x_2, y_2)$ in ρ such that $a + x_1 \leq c + y_1$ and $b + x_2 \leq d + y_2$. Then, since H is partially ordered hemiring, we have

$$(a + x_1).(d + y_2) + (c + y_1).(b + x_2) \leq (a + x_1).(b + x_2) + (c + y_1).(d + y_2)$$

i.e.,

$$(a.d + c.b) + (a.y_2b + x_1.d + x_1.y_2 + y_1.x_2 + c.x_2 + y_1.b)$$

$$\leq (a.b + c.d) + (a.x_2 + y_1.d + y_1.y_2 + x_1.x_2 + c.y_2 + x_1.b)$$

Since (x_1, y_1) and (x_2, y_2) belong to ρ we have that all of $(a.y_2, a.x_2), (x_1.d, y_1.d), (x_1.y_2, y_1.y_2), (y_1.x_2, y_1.y_2), (c.x_2, c.y_2)$ and $(y_1.b, x_1.b)$ are members of ρ. Thus,

$$(a.y_2 + x_1.d + x_1.y_2 + y_1.x_2 + c.x_2 + y_1.b, a.x_2 + y_1.d + y_1.y_2 + x_1.x_2 + c.y_2 + x_1.b) \in \rho.$$

Hence,

$$\rho(a.d + c.b) \leq \rho(a.b + c.d),$$

i.e.,

$$\rho(a).\rho(d) + \rho(c).\rho(b) \leq \rho(a).\rho(b) + \rho(c).\rho(d).$$

Thus H/ρ is a partially ordered hemiring.

Conversely, if H/ρ is a partially ordered hemiring according to the given definition, then it is easy to verify that ρ is convex.
Remark 2.6 For a, b in H we write $\rho(a) < \rho(b)$ if $\rho(a) \leq \rho(b)$ and $\rho(a) \neq \rho(b)$.

3. Congruences on the lattice ordered hemiring $C_+(X)$

In what follows X will stand for a Tychonoff space. $C(X)$ denotes the ring of all real valued continuous functions on X. For a real number r, r^- denotes the constant function on X such that $r(x) = r$ for all x in X. We take \mathbb{R}_+ to be the hemiring of all non-negative real numbers and $C_+(X) = \{ f \in C(X) : f(x) \geq 0 \ \forall x \in X \}$. Then $C_+(X)$ is a lattice ordered hemiring with usual definition of \cdot^+, \cdot and \cdot^\leq and for any two f, g in $C_+(X)$, $f \vee g$ and $f \wedge g$ are defined by,

$$(f \vee g)(x) = \max\{f(x), g(x)\} \text{and}$$
$$(f \wedge g)(x) = \min\{f(x), g(x)\} \ \forall x \in X.$$

Obviously $f \vee g$ and $f \wedge g$ belong to $C_+(X)$.

Convention. Each congruence on $C_+(X)$ considered in this paper will be assumed to be regular and further every such congruence ρ will stand for a proper one i.e., for which $\rho \neq C_+(X) \times C_+(X)$.

We recall some notions and results pertaining to the congruences on the hemiring $C_+(X)$. For a detailed discussion see [1].

Theorem 3.1 If ρ is a congruence on $C_+(X)$ then $E(\rho) = \{ E(f, g) : (f, g) \in \rho \}$ is a z-filter on X, where $E(f, g) = \{ x \in X : f(x) = g(x) \}$ is the agreement set of f and g.

Definition 3.2 A congruence ρ on $C_+(X)$ is called

1. a z-congruence if for all f, g in $C_+(X)$, $E(f, g)$ belongs to $E(\rho)$ implies that (f, g) belongs to ρ.

2. a prime congruence if for all f, g, h, k in $C_+(X)$, $(f \cdot h + g \cdot k; f \cdot k + g \cdot h) \in \rho$ implies either $(f, g) \in \rho$ or $(h, k) \in \rho$.

3. a maximal congruence if there does not exist any congruence σ on $C_+(X)$ which properly contains ρ.

Theorem 3.3 If \mathcal{F} is a z-filter on X, then

$$E^{-1}(\mathcal{F}) = \{ \{ f \}, \{ g \} \in C_+(X) \times C_+(X) : E(\{ f \}, \{ g \}) \in \mathcal{F} \}$$

is a z-congruence on $C_+(X)$.

Theorem 3.4 The assignment $\rho \to E(\rho)$ establishes a one-to-one correspondence between the set of all z-congruences on $C_+(X)$ and that of all z-filters on X.

Theorem 3.5 If \(\rho \) is a maximal congruence on \(C_+(X) \) then \(E(\rho) \) is a \(z \)-ultrafilter on \(X \) and conversely if \(F \) is a \(z \)-ultrafilter on \(X \) then \(E^{-1}(F) \) is a maximal congruence on \(C_+(X) \).

We now state two results which are not included in [1]. Their proofs follow immediately from the following fact:

\[
E(f_1, g_1) \cup E(f_2, g_2) = E(f_1 \cdot f_2 + g_1 \cdot g_2, f_1 \cdot g_2 + f_2 \cdot g_1)
\]

for all \(f_1, f_2, g_1, g_2 \) in \(C_+(X) \).

Theorem 3.6 If \(\rho \) is a prime \(z \)-congruence on \(C_+(X) \), then \(E(\rho) \) is a prime \(z \)-filter on \(X \). Conversely, for any prime \(z \)-filter \(F \) on \(X \), \(E^{-1}(F) \) is a prime \(z \)-congruence on \(C_+(X) \).

Theorem 3.7 Each maximal congruence on \(C_+(X) \) is both a prime congruence and \(z \)-congruence.

4. Order structure on the quotient hemiring of \(C_+(X) \)

Our contemplated main result of this paper demands some study on the order structure of the quotient hemiring of \(C_+(X) \) modulo maximal congruences. The following is the first proposition towards such an end.

Theorem 4.1 A \(z \)-congruence \(\rho \) on \(C_+(X) \) is convex.

Proof. Let \((f, g) \) belong to \(\rho \) and \(h_1, h_2 \) in \(C_+(X) \) be such that \(f \leq h_1 \leq h_2 \leq g \). Since \(E(f, g) \subset E(h_1, h_2) \) and \(E(f, g) \) belongs to \(E(\rho), E(h_1, h_2) \) belongs to \(E(\rho) \). Clearly then \((h_1, h_2) \) belong to \(\rho \) because \(\rho \) is a \(z \)-congruence.

The following two results show that the order structure of the quotient hemiring \(C_+(X)/\rho \) has some connection with agreement sets of the members of \(\rho \). (Compare with similar results in the Sec. 5.4 of [3] for the quotient ring \(C(X)/I \), where \(I \) is a \(z \)-ideal in \(C(X) \).)

Theorem 4.2 Let \(\rho \) be a \(z \)-congruence on \(C_+(X) \) and \(f, g \) belong to \(C_+(X) \). Then \(\rho(f) \leq \rho(g) \) if and only if \(f \leq g \) on some member of \(E(\rho) \). On the other hand if \(f < g \) at each point of some member of \(E(\rho) \), then \(\rho(f) < \rho(g) \).

Proof. Let \(\rho(f) \leq \rho(g) \). Then there exists \((h_1, h_2) \) in \(\rho \) with \(f + h_1 \leq g + h_2 \). Therefore \(f \leq g \) on the set \(E(h_1, h_2) \) in \(E(\rho) \). Conversely, let \(f \leq g \) on \(Z \) where \(Z \) is a member of \(E(\rho) \). Then there exists \((h_1, h_2) \) in \(\rho \) such that \(Z = E(h_1, h_2) \). Put \(h = (f - g) \lor 0 \). Then \(h \) belongs to \(C_+(X) \) and \(E(h, 0) \) contains \(E(h_1, h_2) \). Since \(\rho \) is a \(z \)-congruence, this implies that \((0, h) \) belongs to \(\rho \). We assert that \(f + 0 \leq g + h \). Hence \(\rho(f) \leq \rho(g) \).
For the remaining part of this theorem assume that $f < g$ everywhere on some Z in $E(\rho)$. Then $E(f,g) \cap Z = \emptyset$ which implies that (f,g) does not belong to ρ. Therefore $\rho(f) \neq \rho(g)$. But by the first part of this theorem, we have $\rho(f) \leq \rho(g)$. Hence $\rho(f) < \rho(g)$. \hfill \Box

Theorem 4.3 Let f, g belong to $C_+(X)$ and ρ be a maximal congruence on $C_+(X)$ with $\rho(f) < \rho(g)$. Then there exists a set Z in $E(\rho)$ at each point of which $f < g$.

Proof. The result follows by using Theorem 4.2 and arguing similarly as in the Proof of 5.4 (b) of [3]. \hfill \Box

A question may be raised - what are the z-congruences on $C_+(X)$ which makes the partially ordered hemiring $C_+(X)/\rho$ a totally ordered one? A sufficient condition is provided in the following.

Theorem 4.4 If ρ is a prime z-congruence on $C_+(X)$, then $C_+(X)/\rho$ is a totally ordered hemiring. The same assertion is true in particular therefore for a maximal congruence.

Proof. We need to verify only that for arbitrary f, g in $C_+(X), \rho(f)$ and $\rho(g)$ are comparable with respect to the relation ‘\leq’. Now $Z_1 = \{x \in X : f(x) \leq g(x)\}$ and $Z_2 = \{x \in X : g(x) \leq f(x)\}$ are zero sets in X such that $Z_1 \cup Z_2 = X$. By Theorem 3.4, $E(\rho)$ is a prime z-filter on X. Hence either Z_1 belongs to $E(\rho)$ or Z_2 belongs to $E(\rho)$. But $f \leq g$ on Z_1 and $g \leq f$ on Z_2. By Theorem 4.2 we have either $\rho(f) \leq \rho(g)$ or $\rho(g) \leq \rho(f)$. \hfill \Box

The following proposition is basic towards the initiation of real and hyper-real congruences on $C_+(X)$. The proof is a routine verification and hence omitted.

Theorem 4.5 Let ρ be maximal congruence on $C_+(X)$. Then the mapping $\psi : r \rightarrow \rho(r)$ establishes an order preserving isomorphism of the totally ordered hemiring \mathbb{IR}_+ into the totally ordered hemiring $C_+(X)/\rho$.

This theorem leads to the following

Definition 4.6 A maximal congruence ρ on $C_+(X)$ is called

1. real if $\psi(\mathbb{IR}_+) = C_+(X)/\rho$,

2. hyper-real if it not real.

Therefore Theorem 3.7 of [1] can be restated as follows:

Theorem 4.7 For each point x in X, the fixed congruence $\rho_x = \{(f,g) \in C_+(X) \times C_+(X) : f(x) = g(x)\}$ on $C_+(X)$ is real.

The following is criterion for a maximal congruence on $C_+(X)$ to be a real one.
Theorem 4.8 \ A maximal congruence ρ on $C_+(X)$ is real if and only if the set
\[\{ \rho(n) : n \in \mathbb{N} \} \]
is cofinal in the totally ordered hemiring $C_+(X)/\rho$.

To prove this we need the following lemma.

Lemma 4.9 \ For any maximal congruence ρ on $C_+(X)$ each non-zero element in
$C_+(X)/\rho$ has a multiplicative inverse.

Proof. \ Let f belong to $C_+(X)$ be such that $\rho(f) \neq \rho(\frac{1}{n})$. Since ρ is a z-congruence,
this ensures that $E(f, \frac{1}{n})$ does not belong to $E(\rho)$. Since $E(\rho)$ is z-ultrafilter on
X one can find (h_1, h_2) in ρ with $E(f, \frac{1}{n}) \cap E(h_1, h_2) = \phi$. Let $h = |h_1 - h_2|$ and
g = $1/(f + h)$. Then $h, g \in C_+(X)$ and $E(f, g, \frac{1}{n}) = E(h_1, h_2)$. Since (h_1, h_2) belongs
to ρ and ρ is a z-congruence, $(f, g, \frac{1}{n})$ belongs to ρ. Thus $\rho(f), \rho(g) = \rho(\frac{1}{n})$.

Proof of the theorem. \ Since n is cofinal in the totally ordered hemiring IR_+, the
necessity part of the theorem becomes trivial. Assume therefore that the set
\[\{ \rho(n) : n \in \mathbb{N} \} \] is cofinal in the totally ordered hemiring $C_+(X)/\rho$. We first show that the set
\[\{ \rho(q) : q \in Q_+ \} \] is dense in the totally ordered hemiring $C_+(X)/\rho$, where Q_+ denotes the set of all non-negative rationals. Let f, g belongs to $C_+(X)$ be such that $\rho(f) < \rho(g)$. Then we assert that there is a positive integer n such that $\rho(f) + \rho(1/n) < \rho(g)$. If possible, let for all $n \in \mathbb{N}$
\[\rho(f) + \rho(1/n) \geq \rho(g) \cdots \cdot 4.8.1. \]

Set,
\[B = \{ b \in C_+(X)/\rho : \rho(f) + b < \rho(g) \}. \]

Since $\rho(f) \leq \rho(g)$, by Theorem 4.3 one can find Z in $E(\rho)$ such that $f(x) < g(x)$
for each x in Z. Put $h = ((g - f) \cup \frac{1}{n})/2$. Then $f(x) < f(x) + h(x) < g(x)$ for all
x in Z. By the second part of Theorem 4.2 we have $\rho(f) < \rho(f) + \rho(h) < \rho(g)$. This shows that $\rho(h) \neq \rho(\frac{1}{n})$ and $\rho(h) \in B$. Thus B contains non-zero elements of
$C_+(X)/\rho$. Let b be an arbitrary non-zero element of B. Then by Lemma 4.9, b has a multiplicative inverse, b^{-1}, in $C_+(X)/\rho$. Inequality 4.8.1 gives us
\[\rho(f) + b < \rho(g) \leq \rho(f) + \rho(1/n) \forall n \in \mathbb{N}. \]

This shows that $b < \rho(1/n)$ for all $n \in \mathbb{N}$, and hence $b^{-1} \geq \rho(\frac{1}{n})$ for all $n \in \mathbb{N}$ This is contradiction to the assumption that \[\{ \rho(n) : n \in \mathbb{N} \} \] is cofinal in $C_+(X)/\rho$. Thus there is a positive integer n for which $\rho(f) + \rho(1/n) < \rho(g)$, so that
\[\rho(n)\rho(f) + \rho(1) < \rho(n)\rho(g) \cdots \cdot 4.8.2 \]

Let m be the smallest integer such that $\rho(m)\rho(f) < \rho(m)$ and hence in view of 4.8.2 we have
\[\rho(n)\rho(f) < \rho(m) < \rho(n)\rho(g). \]
Thus, $\rho(f) < \rho(m/n) < \rho(g)$. Therefore \[\{ \rho(q) : q \in Q_+ \} \] is dense in $C_+(X)/\rho$.

Let us define a map $\Phi : C_+(X)/\rho \to IR_+$ by the following rule: let $f \in C_+(X)$. If there is a $q \in Q_+$ such that $\rho(f) = \rho(q)$ then we put $\Phi(\rho(f)) = q$. Otherwise set,
\[L_f = \{ s \in Q_+ : \rho(s) < \rho(f) \} \cup \{ q : q \text{ is a negative rational} \} \]
\(U_f = \{ s \in Q_+ : \rho(f) < \rho(s) \} \).
Then \((L_f, U_f)\) defines a Dedekind section of the set of rationals and accordingly determines a unique real number \(t\), say, which is clearly non-negative. We put in this case \(\Phi(\rho(f)) = t\).

In order to show that \(\Phi\) is an isomorphism of \(C_+(X)/\rho\) onto \(IR_+\) we choose \(f, g\) in \(C_+(X)\) arbitrarily. Then for any four non-negative rational numbers \(p, q, r, s\), satisfying

\[
\rho(p) \leq \rho(f) < \rho(r) \text{ and } \rho(q) \leq \rho(g) < \rho(s),
\]

one, in view of Theorems 4.2 and 4.3 can easily verify that

\[
p + q \leq \Phi(\rho(f)) + \Phi(\rho(g)) < r + s
\]

and

\[
p + q \leq \Phi(\rho(f) + \rho(g)) < r + s.
\]

The last pair of inequalities together with the denseness of \(\{\rho(q) : q \in Q_+\}\) in \(C_+(X)/\rho\) clearly ensures that

\[
\Phi(\rho(f) + \rho(g)) = \Phi(\rho(f)) + \Phi(\rho(g)).
\]

By an argument similar to one used above we can show that

\[
\Phi(\rho(f), \rho(g)) = \Phi(\rho(f)), \Phi(\rho(g)).
\]

Let \(f, g\) belong to \(C_+(X)\) such that \(\rho(f) < \rho(f)\). Since \(\{\rho(q) : q \in Q_+\}\) is dense in \(C_+(X)/\rho\), in view of the definition of \(\Phi\) it follows that \(\Phi(\rho(f)) < \Phi(\rho(g))\). Thus \(\Phi\) is an order preserving isomorphism of \(C_+(X)/\rho\) onto \(IR_+\) and hence \(\rho\) is a real maximal congruence on \(C_+(X)\). \(\square\)

From the above Theorem we can say that for any hyperreal maximal congruence \(\rho\) on \(C_+(X)\) there exists an \(f \in C_+(X)\) for which \(\rho(f) \geq \rho(n)\) for all \(n \in \mathbb{N}\). We call such a \(f(\rho(f)\) an infinitely large element of \(C_+(X)/\rho\). The multiplicative inverse of an infinitely large element is called an infinitely small element of \(C_+(X)/\rho\). One can check that the multiplicative inverse of an infinitely small element is infinitely large. Thus a hyper-real congruence on \(C_+(X)\) is characterised by the presence of infinitely large (or infinitely small) elements in the residue class hemiring.

The following proposition correlates hyper-real congruences on \(C_+(X)\) with unbounded functions on this hemiring.

Theorem 4.10 Let \(\rho\) be a maximal congruence on \(C_+(X)\) and \(f \in C_+(X)\) be arbitrary. Then the following statements are equivalent:

1. \(\rho(f)\) is infinitely large.
2. For all \(n \in \mathbb{N}\) the set \(Z_n = \{ x \in X : f(x) \geq n \}\) is a member of \(E(\rho)\).
3. For all \(n \in \mathbb{N}\), \((f \Lambda_n, n)\) belongs to \(\rho\).
4. \(f\) is unbounded on each member of \(E(\rho)\).

(Compare with Result 5.7 (a) of [3]).
Proof (1) ⇒ (2). Let \(\rho(f) \) be infinitely large. Then \(\rho(n) \leq \rho(f) \) for all \(n \in \mathbb{N} \).

Now for an arbitrary \(n \in \mathbb{N} \), in view of Theorem 4.2, \(\rho(\underline{n}) \leq \rho(f) \) implies that there exists \(Z \in E(\rho) \) such that \(n \leq f \) of \(Z \). Thus \(Z \subset Z_n \). Since \(E(\rho) \) is a \(z \)-ultrafilter on \(X \) and \(Z_n \) is a zero set in \(X \), it follows that \(Z_n \) belongs \(E(\rho) \).

(2) ⇒ (3). Since \(Z_n = E(f\underline{\mathcal{A}}, \underline{\mathcal{A}}) \) for all \(n \in \mathbb{N} \) and \(\rho \) is a \(z \)-congruence, the result follows.

(3) ⇒ (2). Trivial.

(2) ⇒ (4). Let (2) holds. Let \(Z \) be an arbitrary member of \(E(\rho) \). Since \(E(\rho) \) is a \(z \)-ultrafilter, \(Z \cap Z_n \neq \phi \) for all \(n \in \mathbb{N} \). So, for any \(x \) in \(Z \cap Z_n \), \(f(x) \geq n \), for all \(n \in \mathbb{N} \). This shows that \(f \) is unbounded on \(Z \). Consequently (4) holds.

(4) ⇒ (1). Let (4) holds. If possible let \(\rho(f) \) be not infinitely large. So there exists \(n \in \mathbb{N} \) such that \(\rho(f) \leq \rho(n) \). Then by Theorem 4.2 there is \(Z \in E(\rho) \) such that \(f \leq n \) on \(Z \), which contradicts our assumption. Thus \(\rho(f) \) is infinitely large.

We conclude this section with a simple but useful characterisation of real congruences.

Theorem 4.11 A maximal congruence \(\rho \) on \(C_+(X) \) is real if and only if \(E(\rho) \) is closed under countable intersection.

Proof. Let \(\rho \) be real. If possible suppose that \(E(\rho) \) is not closed under countable intersection. So there exists a sequence \(\{(f_n, g_n) : n \in \mathbb{N}\} \) in \(\rho \) such that the set \(\cap\{E(f_n, g_n) : n \in \mathbb{N}\} \) does not belong to \(E(\rho) \). Set \(f = \sum_{n=1}^{\infty} (|f_n - g_n| \wedge 2^{-n}) \). Then by Weierstrass M-test it follows that \(f \in C_+(X) \). Now \(E(f, \underline{\mathcal{A}}) = \cap\{E(f, g) : n \in \mathbb{N}\} \) and hence \((f, \underline{\mathcal{A}}) \not\in \rho \). Therefore \(\rho(\underline{\mathcal{A}}) < \rho(f) \), because \(\underline{\mathcal{A}} \leq f \). For any positive integer \(m \), \(f \leq 2^{-m} \) on the set \(\cap_{n=1}^{m} E(f_n, g_n) \) which is member of \(E(\rho) \). By Theorem 4.2, \(\rho(f) \leq \rho(2^{-m}) \). Since \(m \) is an arbitrary positive integer, \(\rho(f) \) is an infinitely small element of \(C_+(X)/\rho \), whence \(\rho \) becomes hyper-real-a contradiction.

Conversely, let \(E(\rho) \) be closed under countable intersection. If possible suppose that \(\rho \) is not real. Then there exists \(g \) in \(C_+(X) \) such that \(\rho(g) \) is infinitely large. So by Theorem 4.10, for each \(n \in \mathbb{N} \) the set \(Z_n = \{x \in X : n \leq g(x)\} \) is a member of \(E(\rho) \). Obviously \(\cap_{n=1}^{\infty} Z_n = \phi \), - which contradicts our hypothesis. Hence \(\rho \) is real.

\(\Box \)

5. The realcompactification theorem

Let \(W(X) \) be the collection of all maximal congruences on \(C_+(X) \) and \(W_R(X) = \{\rho \in W(X) : \rho \text{ is real}\} \). It is easy to verify that the collection \(\{W(f, g) : f, g \in C_+(X)\} \) is a base for the closed sets of a topology on \(W(X) \) where \(W(f, g) = \{\rho \in W(X) : (f, g) \in \rho\} \). \(W(X) \), equipped with this topology is known as the structure space of \(C_+(X) \). The subspace \(W_R(X) \) of \(W(X) \) is called the real structure space of \(C_+(X) \). It has been established in [1] that \((\eta_X, W(X)) \) is the Stone-Čech compactification \(\beta X \) of \(X \) where \(\eta_X(x) = \rho_x \) for each \(x \in X \). In this section we propose to state and proof that \((\eta_X, W_R(X)) \) is the Hewitt realcompactification \(vX \) of \(X \) which is the main result of this article.
In what follows we recall a definition and two results (without proof) of [2] which play a vital role to achieve our goal.

Definition 5.1 For any subset A of X, the set

$$rcl A = \{x \in X : \text{each } G_\delta \text{ set in } X \text{ containing } x \text{ meets } A\}$$

is called the realclosure (or Q-closure of) A. A is called realclosed (or Q-closed) if $A = rcl A$.

It is clear that every closed set in X is realclosed, while any open interval (a, b) of \mathbb{R} is realclosed subset of \mathbb{R} without being closed.

Theorem 5.2 Every realclosed subset of a realcompact space is realcompact.

Theorem 5.3 X is realcompact if and only if it is realclosed in βX.

Now we are in a position to state and prove our main result.

Theorem 5.4 Let $f : X \to Y$ be a continuous map where Y is a realcompact space. There there exists continuous function $F : W_R(X) \to Y$ such that $F \circ \eta_X = f$ i.e., the following diagram commutes.

$$
\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\eta_X & \downarrow & \nearrow F \\
W_R(X) & &
\end{array}
$$

In order to prove this theorem the following two lemmas are needed.

Lemma 5.5 The subspace $W_R(X)$ of the space $W(X)$ is realcompact.

Proof. Recall that $W(X)$ is compact and hence in particular realcompact. Thus in view of Theorem 5.2, to complete the proof it is sufficient to check that $W_R(X)$ is realclosed subset of $W(X)$.

Let us choose an element ρ_0 in $W(X) - W_R(X)$. Since ρ_0 is hyper-real, there exists $g \in C_+(X)$ such that $\rho_0(g)$ is infinitely large. Set $f_n = g \lor \underline{n}$ and $h_n = g\underline{n}$ for each $n \in \mathbb{N}$. Then by Theorem 4.10, we get that (h_n, \underline{n}) belongs to ρ_0 for each $n \in \mathbb{N}$. Since $(f_n, \underline{n}) \cap E(h_{n+1}, n+1) = \phi$ for each $n \in \mathbb{N}$, $(f_n, \underline{n}) \not\in \rho_0$ for each $n \in \mathbb{N}$. Now set $V = W(X) - \bigcup_{n=1}^{\infty} W(f_n, \underline{n})$. Then V is a G_δ-set in $W(X)$ containing ρ_0. Let ρ be an arbitrary element in $W_R(X)$. Then by Theorem 4.8, $\rho(g) \leq \rho(m)$ for some $m \in \mathbb{N}$. Also by Theorem 4.2, there is a Z in $E(\rho)$ such that $g \leq \underline{m}$ on Z and hence $Z \subset E(f_n, \underline{m})$. Consequently $(f_n, \underline{m}) \in \rho$ which implies that $\rho \in W(f_n, \underline{m})$. Thus $V \cap W_R(X) = \phi$ and hence $W_R(X)$ is realclosed in $W(X)$.

□
Lemma 5.6 Let \(f : X \to Y \) be continuous, \(\rho \) be a prime \(z \)-congruence on \(C_+(X) \). Then \(f^*(\rho) \), defined by

\[
f^*(\rho) = \{ E(h, g) : h, g \in C_+(Y), (h \circ f, g \circ f) \in \rho \},
\]
is a prime \(z \)-filter on \(Y \). Moreover if \(\rho \) is real maximal congruence on \(C_+(X) \), then \(f^*(\rho) \) has the countable intersection property.

Proof. Obviously \(\phi \) is not a member of \(f^*(\rho) \). Let \(Z \) belong to \(f^*(\rho) \) and \(Z_1 \) be a zero-set in \(Y \) containing \(Z \). Then there exists \(h, g, h_1, g_1 \in C_+(Y) \) such that \(Z = E(h, g) \), \(Z_1 = E(h_1, g_1) \) and \((h \circ f, g \circ f) \) belongs to \(\rho \). So \(E(h \circ f, g \circ f) \) belongs to \(E(\rho) \). It can easily be verified that \(E(h \circ f, g \circ f) \subset E(h_1 \circ f, g_1 \circ f) \) and hence, \(\rho \) being a \(z \)-congruence, \((h_1 \circ f, g_1 \circ f) \) belongs to \(\rho \). Consequently \(Z_1 = E(h_1, g_1) \) belongs to \(f^*(\rho) \).

Now suppose that \(Z_1, Z_2 \) be two arbitrary members of \(f^*(\rho) \). So there are \(h_1, g_1, h_2, g_2 \) in \(C_+(Y) \) such that \(Z_i = E(h_i, g_i) \) and \((h_i \circ f, g_i \circ f) \) are members of \(\rho \) for \(i = 1, 2 \). Since for any \(h, g \) in \(C_+(Y) \), \((h \circ f, g \circ f) = (h \circ f).g \circ f \) and \((h + g) \circ f = (h \circ f) + (g \circ f) \), it follows that

\[
E(h_1 \circ f, g_1 \circ f) \cap E(h_2 \circ f, g_2 \circ f) = E((h_1 \circ f)^2 + (g_1 \circ f)^2 + (h_2 \circ f)^2 + (g_2 \circ f)^2, 2((h_1 \circ f).g_1 \circ f) + (h_2 \circ f).g_2 \circ f))
\]

which is a member of \(E(\rho) \). Thus

\[
Z_1 \cap Z_2 = E((h_1^2 + g_1^2 + h_2^2 + g_2^2), 2(h_1 \circ g_1 + h_2 \circ g_2)) \in f^*(\rho).
\]

This shows that \(f^*(\rho) \) is a \(z \)-filter on \(Y \).

Finally, let \(Z_1 \cup Z_2 \) belong to \(f^*(\rho) \) where \(Z_i = E(f_i, g_i) ; f_i, g_i \in C_+(Y) \), \(i = 1, 2 \). Then since \(Z_1 \cup Z_2 = E(f_1.g_2 + f_2.g_1, f_1.f_2 + g_1.g_2) \) and \(\rho \) is prime, by an argument similar to the above we can show that either \(Z_1 \in f^*(\rho) \) or \(Z_2 \in f^*(\rho) \). Thus \(f^*(\rho) \) is a prime \(z \)-filter on \(Y \).

To show, for a real maximal congruence \(\rho \) on \(C_+(X) \), \(f^*(\rho) \) has the countable intersection property, let us take a sequence \(\{ E(h_n, g_n) \} \) in \(f^*(\rho) \). Then for all \(n \in \mathbb{N}, (h_n \circ f, g_n \circ f) \) belongs to \(\rho \) and hence by the Theorem 4.11, \(\cap_{n=1}^{\infty} E(h_n \circ f, g_n \circ f) \) is non-empty. For any \(x \) in \(\cap_{n=1}^{\infty} E(h_n \circ f, g_n \circ f) \), \(f(x) \in \cap_{n=1}^{\infty} E(h_n, g_n) \). Thus \(f^*(\rho) \) has the countable intersection property.

Proof of the Theorem. Let \(\rho \) be a member of \(W_R(X) \). Since for a prime \(z \)-filter with countable intersection property on a realcompact space is fixed and since prime \(z \)-filter contains at most one cluster point (see 8.12 and 3.18 of [3]) it follows that there exists a unique \(y \) in \(Y \) such that \(\{ y \} = \cap f^*(\rho) \). For every \(\rho \) in \(W_R(X) \) set \(F(\rho) = y \) where \(\{ y \} = \cap f^*(\rho) \). This defines a map \(F : W_R(X) \to Y \). For each \(x \in X \) it follows that \(F(\rho_x) = f(x) \) because \(f(x) \in \cap f^*(\rho_x) \). Thus \(F(\eta_X(x)) = f(x) \) \(\forall x \in X \) and hence \(F \eta_X = f \).
To prove the continuity of the function F, choose any ρ_0 in $W_R(X)$ and any open set V in Y such that $F(\rho_0) \in V$. Then there exist $g_1, g_2 \in C_+(Y)$ such that

$$F(\rho_0) \in Y - Z(g_1) \subset Z(g_2) \subset V.$$

Clearly then $g_1, g_2 = 0$. Now $F(\rho_0)$ does not belong to $Z(g_1)$ and hence $Z(g_1) = E(g_1, 0)$ does not belong to $f^*(\rho)$. Consequently $(g_1 \circ f, 0)$ does not belong to ρ_0 and this implies that the set $U = (W(X) - W(g_1 \circ f, 0)) \cap W_R(X)$ is an open neighbourhood of ρ_0 in $W_R(X)$. Now choose any ρ in U. Then $(g_1 \circ f, 0) \not\in \rho$. Since $(g_1 \circ f)(g_2 \circ f) = 0$ and ρ is a prime congruence on $C_+(X)$, it follows that $(g_2 \circ f, 0) \in \rho$. Thus $Z(g_2) = E(g_2, 0) \in f^*(\rho)$ and hence $F(\rho) \in E(g_2, 0) = Z(g_2) \subset V$. Thus $F(U) \subset V$. Therefore the map $F: W_R(X) \to Y$ is continuous. \hfill \Box

Recall that the Hewitt realcompactification vX of a space X is characterised by the fact that any continuous map of X into an arbitrary realcompact space admits a continuous extension over vX. Hence in view of the above theorem we conclude our article with the following

Corollary 5.7 $(n_X, W_R(X))$ is the Hewitt realcompactification vX.

References

Gour Gopal Ray
Department of Mathematics
University of Burdwan
Burdwan 713104, W.B.
India.