Some Small-Centralizer Properties for Rings

Howard E. Bell∗ Abraham A. Klein

Department of Mathematics, Brock University
St. Catharines, Ontario, Canada L2S 3A1
e-mail: hbell@brocku.ca

School of Mathematical Sciences, Sackler Faculty of Exact Sciences
Tel Aviv University, Tel Aviv 69978, Israel
e-mail: aaklein@post.tau.ac.il

Abstract. We characterize rings R in which certain elements x have the property that $C_R(x)$ (resp. the set of zero divisors in $C_R(x)$) is finite. We also explore the consequences of an assumption that certain x satisfy $C_R(x) = \langle x \rangle$.

1. Introduction

Let R be a ring with center Z, and let D be the set of zero divisors of R. For $x \in R$, let $C_R(x)$ be the centralizer of x in R. We study rings in which $C_R(x)$ is finite for all $x \in R \setminus Z$ and rings in which $C_R(x) \cap D$ is finite for all $x \in D \setminus Z$. In the first case we show that R is either finite or commutative; in the second case we show that either R is finite or $D \subseteq Z$.

As in [2], we call an element $x \in R$ extremely noncommutative if $C_R(x) = xZ[x]$ – i.e. if $C_R(x)$ is the subring generated by x. Our most difficult result deals with rings such that each element of $D \setminus Z$ is extremely noncommutative.

Let us fix some additional notation and terminology. Let $N = N(R)$ denote the set of nilpotent elements of R, and $T = T(R)$ the set of elements of finite additive
order. For \(x \in R \), let \(\langle x \rangle \) and \(A(x) \) be respectively the subring generated by \(x \) and the two-sided annihilator of \(x \). For a subring \(S \) of \(R \), let \([R : S] \) denote the index of \((S,+)\) in \((R,+);\) and for a subset \(X \) of \(R \), let \(|X| \) denote the cardinality of \(X \). An element \(x \in R \) is called periodic if there exist distinct positive integers \(m, n \) for which \(x^m = x^n \), and the ring \(R \) is called periodic if each of its elements is periodic.

The following lemmas will be useful.

Lemma 1.1. [6] If \(R \) is a periodic ring with \(N \subseteq Z \), then \(R \) is commutative.

Lemma 1.2. [3] Let \(R \) be a ring such that for each \(x \in R \) there exist a positive integer \(m \) and a polynomial \(p(X) \in Z[X] \) for which \(x^m = x^{m+1}p(x) \). Then \(R \) is periodic.

Lemma 1.3. [7] If \(R \) is infinite and \(x \in N \), then \(|A(x)| = |R| \). In particular, \(A(x) \) is infinite.

2. Finite-centralizer conditions

Theorem 2.1. If \(R \) is a ring such that \(C_R(x) \) is finite for all \(x \in R\setminus Z \), then \(R \) is either finite or commutative.

Proof. Suppose that \(R \) is infinite. Since \(A(x) \subseteq C_R(x) \), it follows by Lemma 1.3 that \(N \subseteq Z \). Suppose also that \(R \) is not commutative and \(x \in R\setminus Z \). Since \(\langle x \rangle \subseteq C_R(x) \), \(\langle x \rangle \) is finite and hence \(x \) is periodic; and since \(Z \) is clearly finite, central elements are periodic as well. Thus, \(R \) is a noncommutative periodic ring with \(N \subseteq Z \), contrary to Lemma 1.1. Therefore \(R \) must be commutative. \(\square \)

Theorem 2.2. Let \(R \) be a ring such that \(C_R(x) \cap D \) is finite for all \(x \in D\setminus Z \). Then either \(R \) is finite or \(D \subseteq Z \).

Proof. Note that if \(S \) is any infinite subring of \(R \) such that \(C_S(x) = C_R(x) \cap S \) is finite for all \(x \in S\setminus Z \), \(S \) is commutative by Theorem 2.1 and therefore \(S \subseteq Z \). In particular, if \(S \) is any infinite subring contained in \(D \), \(S \subseteq Z \).

Suppose that \(D\setminus Z \neq \emptyset \), and assume without loss of generality that \(xy = 0 \) with \(x \in D\setminus Z \) and \(y \neq 0 \). If \(A_i(y) \) is infinite, we have \(x \in A_i(y) \subseteq Z \) – a contradiction; therefore \(A_i(y) \) is finite. For each \(w \in A_i(y) \), consider the map \(f_w : R \to A_i(y) \) given by \(f_w(r) = rw \). By applying the first isomorphism theorem for additive groups, we see that \(\ker(f_w) = A_i(w) \) is of finite index in \(R \); hence \(S = A_i(A_i(y)) \) is of finite index and therefore is infinite. Thus \(S \subseteq Z \); and since \(S \subseteq A_i(x) \), we see that \(A(x) \) is an infinite subset of \(C_R(x) \cap D \) – a contradiction. \(\square \)

3. An extreme non-commutativity condition

In [2], the following theorem is proved.

Theorem 3.1. If \(R \) is a ring in which all noncentral elements are extremely noncommutative, then \(R \) is either finite or commutative.
In [8], we were led to consider an infinite noncentral subring A with subring $B = A \cap Z$ such that $A^2 \subseteq Z$, $A = \langle a \rangle$ for all $a \in A \setminus B$, and $[A : B]$ is a prime. In the sections headed Proof of Theorem 2.1 and Completion of proof of Theorem 2.1, we showed that such a subring cannot exist. Thus, we proved, but did not explicitly state, the following lemma.

Lemma 3.2. Let R be an infinite noncommutative ring. Then R contains no infinite noncentral subring A such that $A^2 \subseteq Z$, $A = \langle a \rangle$ for all $a \in A \setminus Z$, and $[A : A \cap Z]$ is a prime.

The principal theorem of this section, which we now state, is obtained by weakening the extreme noncommutativity hypothesis in Theorem 3.1.

Theorem 3.3. Let R be a ring in which every element of $D \setminus Z$ is extremely noncommutative. Then either R is finite or $D \subseteq Z$.

The proof will be presented as a series of lemmas, the first of which is almost obvious. In each lemma, it will be assumed without explicit mention that R is a ring in which every element of $D \setminus Z$ is extremely noncommutative.

Lemma 3.4. If $D \not\subseteq Z$, then R is indecomposable. Hence R has no nonzero central idempotent zero divisors.

Lemma 3.5. If $N \not\subseteq Z$, then R is finite.

Proof. Since Z centralizes $N \setminus Z$, $Z \subseteq N$. We show first that all zero divisors are periodic. This is clearly true for nilpotent elements, so we consider $d \in D \setminus N$. Then $d^2 \not\in N$, so $d^2 \not\in Z$ and hence $d \in \langle d^2 \rangle$. Thus there exists $p(X) \in Z[X]$ such that $d = d^2 p(d)$. Since each element of D is in some subring of zero divisors, Lemma 1.2 shows that zero divisors are periodic.

Next we show that $D \subseteq T(R)$. Let $d \in D$ and $D' = \langle d \rangle$. By [1, Lemma 1(c)], $d = a + u$ with $u \in N$ and a a power of d such that $a^n = a$ for some $n > 1$. Now $e = a^{n-1}$ is an idempotent such that $a = ae$; and since e is in the periodic ring D', $2e$ is periodic, hence $e \in T(R)$ and $a \in T(R)$. We now need to show that $N \subseteq T(R)$; and since $Z = Z \cap N \subseteq (N \setminus Z) - (N \setminus Z)$, it suffices to show that $N \setminus Z \subseteq T(R)$. Let $u \in N \setminus Z$ and suppose $u^k \in T(R)$ for $k \geq 2$. Since $u \not\in Z$, there exists $n \geq 2$ such that $nu \not\in Z$; and it follows that $u \in \langle nu \rangle$, so that there exist $c_1, c_2, \ldots, c_t \in Z$ such that $u = c_1(nu) + c_2(nu)^2 + \cdots + c_t(nu)^t$. Multiplying by u^{k-2} gives $(1 - c_1n)u^{k-1} \in T(R)$ and hence $u^{k-1} \in T(R)$. By backward induction, $u \in T(R)$.

We now know that if $d \in D \setminus Z$, $\langle d \rangle$ is finite and consequently $C_R(d)$ is finite. Thus, R is finite by Theorem 2.2.

Lemma 3.6.

(i) If $D \not\subseteq Z$ and $N \subseteq Z$, then $d^n \in Z$ for all $d \in D$ and $n \geq 2$.

(ii) If $D \not\subseteq Z$, there exists a prime p such that $pD \subseteq Z$.

Proof. By Lemma 3.4, R has no nonzero idempotent zero divisors. Hence, we need only adapt in an obvious way the proof of Lemma 2.8 of [2].

Lemma 3.7. If $N \subseteq Z$, then every subring of zero divisors is commutative.

Proof. Let H be any subring of zero divisors, and let $h \in H \setminus Z(H)$. Then $C_H(h) = \langle h \rangle$, so H is either finite or commutative by Theorem 3.1. Moreover, if H is finite, it is commutative by Lemma 1.1.

Lemma 3.8. Let R be infinite with $D \not\subseteq Z$ and $N \subseteq Z$. Then

(i) D is infinite;
(ii) D is a commutative ideal and hence $D^2 \subseteq Z$;
(iii) $D = \langle d \rangle$ for every $d \in D \setminus Z$;
(iv) $[D : D \cap Z] = p$ for some prime p.

Proof. (i) follows immediately from an old theorem of Ganesan [4, 5], which asserts that any ring R with $1 \leq |D \setminus \{0\}| < \infty$ must be finite.
(ii) Use the proof of Lemma 2.4 of [8], which employs Lemma 3.7.
(iii) Let $d \in D \setminus Z$. By (ii), $D \subseteq C_R(d) = \langle d \rangle$; and obviously $\langle d \rangle \subseteq D$.
(iv) Since we now know that D is an additive subgroup, the result follows from (iii) and Lemma 3.6.

Proof of Theorem 3.3. Assume that $D \not\subseteq Z$. By Lemmas 3.8 and 3.2, we cannot have $N \subseteq Z$; hence R is finite by Lemma 3.5.

Theorem 3.3 does not provide a characterization of rings such that all $d \in D \setminus Z$ are extremely noncommutative, since we do not have complete information about the finite examples. We do, however, have partial information.

Theorem 3.9. Let R be a finite ring with $D \not\subseteq Z$ such that each $d \in D \setminus Z$ is extremely noncommutative. Then either R is isomorphic to a matrix ring of form $GF(p)e_{11} + GF(p)e_{12}$ or $GF(p)e_{11} + GF(p)e_{21}$, or R is nil.

Proof. If $R = D$, the result follows by Theorem 2.11 of [2]. Otherwise, if $x \in R \setminus D$, some power of x is a regular idempotent, necessarily 1. Now by Lemma 1.1, there exists $u \in N \setminus Z$; and since $1 + u \in C_R(u)$, $1 + u \in \langle u \rangle$. But this is not possible, since $\langle u \rangle$ is a nil ring and $1 + u$ is invertible.

References

Received June 26, 2008