Ideal Structure of Hurwitz Series Rings

Ali Benhissi

Department of Mathematics, Faculty of Sciences
5000 Monastir, Tunisia
e-mail: ali_benhissi@yahoo.fr

Abstract. We study the ideals, in particular, the maximal spectrum and the set of idempotent elements, in rings of Hurwitz series.

Let A be a commutative ring with identity. The elements of the ring HA of Hurwitz series over A are formal expressions of the type $f = \sum_{i=0}^{\infty} a_i X^i$ where $a_i \in A$ for all i. Addition is defined termwise. The product of f by $g = \sum_{i=0}^{\infty} b_i X^i$ is defined by $f \ast g = \sum_{n=0}^{\infty} c_n X^n$ where $c_n = \sum_{k=0}^{n} \binom{n}{k} a_k b_{n-k}$ and $\binom{n}{k}$ is a binomial coefficient. Recently, many authors turned to this ring and discovered interesting applications in it. See for example [1] and [2]. The natural homomorphism $\epsilon : HA \rightarrow A$, is defined by $\epsilon(f) = a_0$.

1. Generalities

1.1. Proposition. HA is an integral domain if and only if A is an integral domain with zero characteristic.

Proof. \Leftarrow See [1, Corollary 2.8].

\Rightarrow Since $A \subset HA$, then A is a domain. Suppose that A has a positive characteristic m. Then $X \ast X^{m-1} = (\binom{m-1+1}{1}) X^m = m X^m = 0$.

1.2. Proposition. Let I be an ideal of A. Then $HA/\epsilon^{-1}(I) \simeq A/I$ and $HA/HI \simeq H(A/I)$. In particular

a) $\epsilon^{-1}(I)$ is a radical ideal of $HA \iff I$ is a radical ideal of A.

0138-4821/93 $\$ 2.50 c 2007 Heldermann Verlag
Proof. The map \(\psi : HA \rightarrow A/I \), defined by \(\psi = \tau \circ \epsilon \) where \(\tau \) is the canonical surjection of \(A \) onto \(A/I \), is a surjective homomorphism with \(\ker \psi = \epsilon^{-1}(I) \), so \(HA/\epsilon^{-1}(I) \approx A/I \).

The map \(\phi : HA \rightarrow H(A/I) \), defined for \(f = \sum_{i=0}^{\infty} a_iX^i \) by \(\phi(f) = \sum_{i=0}^{\infty} \bar{a}_iX^i \), is a surjective homomorphism, with \(\ker \phi = HI \), so \(HA/HI \approx H(A/I) \).

Now (a), (b) and (c) follow from the first isomorphism.

(d) \(HI \in Spec(HA) \iff HA/HI \) an integral domain \(\iff H(A/I) \) an integral domain \(\iff A/I \) an integral domain with zero characteristic \(\iff I \in Spec(A) \) and \(A/I \) has zero characteristic.

The inverse implication in (d) of the proposition was proved in [1, Prop. 2.7].

Example. Let \(A = \mathbb{F}_q \) be the finite field of \(q \) elements. Since \(X^q - 1 = qX^q = 0 \), then \(H0 = 0 \) is not prime in \(HF_q \).

1.3. Corollary. The set of maximal ideals of \(HA \) is \(\text{Max}(HA) = \{ \epsilon^{-1}(M) : M \in \text{Max}(A) \} \). In particular, the Jacobson radical \(\text{Rad}(HA) = \epsilon^{-1}(\text{Rad}(A)) \). The ring \(HA \) is local (resp. quasi local) if and only if \(A \) is local (resp. quasi local).

\[\begin{align*}
\text{Examples.} & \quad 1) \text{Max}(HZ) = \{ \epsilon^{-1}(p\mathbb{Z}) : p \text{ prime integer} \}.
\end{align*} \]

2) For any field \(K \), \(HK \) is local with maximal ideal \(\epsilon^{-1}(0) \).

3) Contrary to the case of the ring of usual formal power series over a field, the element \(X \) does not generate the maximal ideal \(\epsilon^{-1}(0) \) of \(HF_2 \). Indeed, for any \(f = \sum_{n=0}^{\infty} a_nX^n \in HF_2 \), \(X \cdot f = \sum_{n=0}^{\infty} (n+1)a_nX^{n+1} = \sum_{n=0}^{\infty} (n+1)a_nX^{n+1} = \sum_{k=0}^{\infty} a_{2k}X^{2k+1}. \)

1.4. Proposition. If \(P \subset Q \) are consecutive prime ideals in \(A \), then \(\epsilon^{-1}(P) \subset \epsilon^{-1}(Q) \) are consecutive prime ideals in \(HA \).

Proof. Let \(R \in Spec(HA) \) such that \(\epsilon^{-1}(P) \subset R \subset \epsilon^{-1}(Q) \). There is an \(f = a_0 + a_1X + \cdots \in R \setminus \epsilon^{-1}(P) \). Then \(a_0 \not\in P \) and \(a_0 = f - (a_1X + \cdots) \in R \) since \(a_1X + \cdots \in \epsilon^{-1}(P) \subset R \). Therefore \(a_0 \in R \cap A \) and \(P = \epsilon^{-1}(P) \cap A \subset R \cap A \subset \epsilon^{-1}(Q) \cap A = Q \). Since \(P \subset Q \) are consecutive, then \(R \cap A = Q \). For any element \(g = b_0 + b_1X + \cdots \in \epsilon^{-1}(Q) \), \(b_0 \in Q \subset R \) and \(b_1X + \cdots \in \epsilon^{-1}(P) \subset R \), so \(g \in R \) and \(\epsilon^{-1}(Q) = R \).
2. Idempotent elements in Hurwitz series ring

For \(f \in HA \), the ideal \(c(f) \) generated by the coefficients of \(f \) in \(A \) is called the content of \(f \).

2.1. Proposition. Suppose that for any \(P \in \text{Spec}(A) \), \(A/P \) has zero characteristic. If \(f \) and \(g \) are such that \(f \cdot g = 0 \), then \(c(f)\cdot c(g) \subseteq \text{Nil}(A) \). Moreover, if \(A \) is reduced, then each coefficient of \(f \) annihilates \(g \).

Proof. By Proposition 1.2, for any \(P \in \text{Spec}(A) \), \(HP \in \text{Spec}(HA) \). Since \(f \cdot g = 0 \in HP \), then \(f \) or \(g \in HP \). If \(a \) is a coefficient of \(f \) and \(b \) a coefficient of \(g \), then \(ab \in P \). So \(ab \in \bigcap \{ P : P \in \text{Spec}(A) \} = \text{Nil}(A) \) and \(c(f)\cdot c(g) \subseteq \text{Nil}(A) \).

Example. The result is not true in general. Suppose for example that \(A \) has positive characteristic \(n \). Then \(X \cdot X^{n-1} = \binom{n-1+1}{1}X^n = nX^n = 0 \), with \(c(X) = c(X^{n-1}) = A \), so \(c(X)c(X^{n-1}) = A \not\subseteq \text{Nil}(A) \).

As usual, \(\text{Bool}(A) \) will mean the set of idempotent elements in the ring \(A \).

2.2. Corollary. Suppose \(A \) is reduced and \(A/P \) has zero characteristic, for every \(P \in \text{Spec}(A) \). Then \(\text{Bool}(HA) = \text{Bool}(A) \).

Proof. Let \(f = \sum_{i=0}^{\infty} a_iX^i \in HA \), with \(f \cdot f = f \). Then \(f-1 = (a_0-1)+\sum_{i=1}^{\infty} a_iX^i \) and \(f \cdot (f-1) = 0 \). By Proposition 2.1, for \(i \geq 1 \), \(a_i^2 = 0 \), so \(a_i = 0 \) and \(f = a_0 \in A \).

More generally, we have the following result.

2.3. Proposition. For any ring \(A \), \(\text{Bool}(HA) = \text{Bool}(A) \).

Proof. Let \(f = \sum_{i=0}^{\infty} a_iX^i \in HA \) be such that \(f \cdot f = f \). Then \(a_0^2 = a_0 \) and \(2a_0a_1 = a_1 \Rightarrow 2a_0^2a_1 = a_0a_1 \Rightarrow 2a_0a_1 = a_0a_1 \Rightarrow a_0a_1 = 0 \). Suppose by induction that \(a_0a_i = 0 \), for \(1 \leq i < n \). The coefficient of \(X^n \) in \(f \cdot f = f \) is \(\sum_{i=0}^{n}(\binom{n}{i})a_ia_{n-i} = a_n \Rightarrow a_0(\sum_{i=0}^{n}(\binom{n}{i})a_ia_{n-i}) = a_0a_n \Rightarrow a_0(\binom{n}{i})a_ia_n + (\binom{n}{i})a_ia_0) = a_0a_n \Rightarrow 2a_0^2a_n = a_0a_n \Rightarrow 2a_0a_n = a_0a_n \Rightarrow a_0a_n = 0 \). So for each \(i \geq 1 \), \(a_0a_i = 0 \). Suppose that \(f \not\in A \) and let \(k = \min \{ i \in \mathbb{N}^+ : a_i \neq 0 \} \), \(g = \sum_{i=k}^{\infty} a_iX^i \), then \(k \geq 1 \), \(a_k \neq 0 \), \(f = a_0 + g \), \(a_0 \cdot g = \sum_{i=k}^{\infty} a_0a_iX^i = 0 \). Since \(f \cdot f = f \), then \((a_0 + g) \cdot (a_0 + g) = a_0 + g \Rightarrow a_0^2 + g \cdot g = a_0 + g \Rightarrow g \cdot g = g = (\binom{k}{k})a_k^2X^2k + \cdots = a_kX^k + \cdots \Rightarrow a_k = 0 \), which is impossible. So \(f = a_0 \in A \).

A ring \(A \) is called PS if the socle \(\text{Soc}(A) \) is projective. By [3, Theorem 2.4], a ring \(A \) is PS if and only if for every maximal ideal \(M \) of \(A \) there is an idempotent \(e \) of \(A \) such that \((0 : M) = eA \). In [2, Theorem 3.2], Zhongkui Liu proved the following result:

“If \(A \) has zero characteristic and if \(A \) is a PS-ring, then \(HA \) is a PS-ring”. His proof is not correct, it uses in many places the wrong fact:

“If \(A \) has zero characteristic, \(n \in \mathbb{N}^+ \) and \(x \in A \), then \(nx = 0 \) implies \(x = 0 \)”.

But this is not true. Take for example: \(A = \mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \), \(n \geq 2 \) an integer and \(x = (0,1) \). When I wrote to Liu, he proposed to replace the condition “\(A \) has zero characteristic” by “\(A \) is \(\mathbb{Z} \)-torsion free”. With this change the proof becomes correct.
In the next proposition, I avoid the hypothesis “A is a PS-ring” in the theorem of Liu and I give a short and simple proof.

2.4. Proposition. If A is torsion free as a \(\mathbb{Z} \)-module, then \(HA \) is a PS-ring.

Proof. If \(M \in \text{Max}(HA) \), there is \(M \in \text{Max}(A) \) such that \(M = e^{-1}(M) \) by Corollary 1.3, so \(X \in M \). Let \(f = \sum_{i=0}^{\infty} a_i X^i \in (0 : M) \), then \(0 = X \ast f = \sum_{i=0}^{\infty} (i+1) a_i X^{i+1} = \sum_{i=0}^{\infty} i a_i X^{i} \). For each \(i \in \mathbb{N} \), \((i+1) a_i = 0 \), but \(A \) is \(\mathbb{Z} \)-torsion free, then \(a_i = 0 \) and \(f = 0 \).

2.5. Lemma. Suppose that A is reduced and \(A/P \) has zero characteristic for any \(P \in \text{Spec}(A) \). For \(f \in HA \), let \(I_f = (0 : c(f)) \). Then:

a) For every \(f \in HA \), \((0 : f) = HI_f \).

b) If \(J \) is an ideal of \(HA \) and \(L = \sum_{f \in J} c(f) \), then \((0 : J) = H(0 : L) \).

Proof.

a) Put \(f = \sum_{i=0}^{\infty} a_i X^i \). By Proposition 2.1, \(g = \sum_{i=0}^{\infty} b_i X^i \in (0 : f) \iff f \ast g = 0 \iff \forall i, j \in \mathbb{N}, a_i b_j = 0 \iff \forall j \in \mathbb{N}, b_j \in (0 : c(f)) = I_f \iff g \in HI_f \).

b) By part a), \((0 : J) = \bigcap_{f \in J} (0 : f) = \bigcap_{f \in J} HI_f = H\big(\bigcap_{f \in J} I_f\big) \). But \(\bigcap_{f \in J} I_f = \bigcap_{f \in J} (0 : c(f)) = (0 : \sum_{f \in J} c(f)) = (0 : L) \). So \((0 : J) = H(0 : L) \).

2.6. Proposition. If A is reduced with \(A/P \) has zero characteristic for every \(P \in \text{Spec}(A) \), then \(HA \) is a PS-ring.

Proof. Let \(M \in \text{Max}(HA) \). By Corollary 1.3, \(X \in M \), then \(\sum_{f \in M} c(f) = A \). By the preceding lemma, \((0 : M) = H(0 : A) = H0 = (0) \).

Conjecture. In [4, Proposition 4], Xue showed that the ring \(A[[X]] \) is always PS, for any ring \(A \). In the light of this theorem and the preceding results I conjecture that the ring \(HA \) is also PS.

2.7. Definition. A quasi-Baer ring is a ring A such that for any ideal \(I \) of A there is an idempotent \(e \) of A with \((0 : I) = eA \).

The following lemma is well known. We include its proof for the sake of the reader.

2.8. Lemma. Any quasi-Baer ring is reduced.

Proof. Let \(a \) be a nilpotent element of the quasi-Baer ring \(A \) and \(n \geq 1 \) the smallest integer such that \(a^n = 0 \). Let \((0 : aA) = eA \), with \(e \in A \) and \(e^2 = e \). If \(n \geq 2 \), then \(a^{n-1} \in eA \), put \(a^{n-1} = eb \), with \(b \in A \). Since \(ae = 0 \), then \(0 = a^{n-1} e = be^2 = be = a^{n-1} \), which is impossible.

2.9. Proposition. If A is a quasi-Baer ring with \(A/P \) has zero characteristic for every \(P \in \text{Spec}(A) \), then \(HA \) is a quasi-Baer ring.
Proof. Let \(J \) be an ideal of \(HA \) and \(L = \sum_{f \in J} c(f) \). There is \(e \in \text{Bool}(A) \) such that
\[
(0 : L) = eA.
\]
By Lemma 2.5,
\[
(0 : J) = H(0 : L) = H(eA) = e \ast HA.
\]

3. Hurwitz series over a noetherian ring

3.1. Lemma. Let \(I \) be an ideal of \(A \). Then \(HI = I \ast HA \) if and only if for any countable subset \(S \) of \(I \) there is a finitely generated ideal \(F \) of \(A \) such that \(S \subseteq F \subseteq I \).

Proof. \(\Rightarrow \) A countable subset of \(I \) is a sequence \((a_i)_{i \in \mathbb{N}}\) of elements of \(I \). Let
\[
f = \sum_{i=0}^{\infty} a_i X^i \in HI = I \ast HA.
\]
There are \(b_1, \ldots, b_n \in I \) and \(g_1, \ldots, g_n \in HA \) such that
\[
f = b_1 \ast g_1 + \cdots + b_n \ast g_n.
\]
If \(F = b_1A + \cdots + b_nA \), then \(\{a_i : i \in \mathbb{N}\} \subseteq F \).

\(\Leftarrow \) Since \(I \subset HI \), then \(I \ast HA \subseteq HI \). Now, let
\[
f = \sum_{i=0}^{\infty} a_i X^i \in HI.
\]
There is a finitely generated ideal \(F = b_1A + \cdots + b_nA \) of \(A \) such that \(\{a_i : i \in \mathbb{N}\} \subseteq F \subseteq I \).

For each \(i \in \mathbb{N} \), \(a_i = \sum_{j=1}^{n} a_{ij}b_j \), with \(a_{ij} \in A \). So
\[
f = \sum_{i=0}^{\infty} (\sum_{j=1}^{n} a_{ij}b_j)X^i = \sum_{j=1}^{n} b_j \ast \left(\sum_{i=0}^{\infty} a_{ij}X^i \right) \in I \ast HA.
\]

Example. Let \((A, M)\) be a non-discrete valuation domain of rank one, defined by a valuation \(v \) with group \(G \). We can suppose that \(G \) is a dense subgroup of \(\mathbb{R} \). Let \((a_i)_{i \in \mathbb{N}}\) be a strictly decreasing sequence of elements of \(G \) converging to zero. For each \(i \in \mathbb{N} \), there is \(a_i \in M \), with \(v(a_i) = \alpha_i \). Let
\[
f = \sum_{i=0}^{\infty} a_i X^i \in HM.
\]

Suppose that \(f \in M \ast HA \), there is \(b \in M \) and \(g = \sum_{i=0}^{\infty} c_i X^i \in HA \) such that
\[
f = b \ast g.
\]
For each \(i \in \mathbb{N} \), \(a_i = bc_i \), so \(\alpha_i = v(a_i) = v(b) + v(c_i) \geq v(b) \), which is impossible.

3.2. Corollary. If \(I \) is a finitely generated ideal, then \(HI = I \ast HA \).

3.3. Proposition. The ring \(A \) is noetherian if and only if for each ideal \(I \) of \(A \), \(HI = I \ast HA \).

Proof. Suppose that \(A \) is not noetherian and let \((I_i)_{i \in \mathbb{N}}\) be a strictly increasing sequence of ideals of \(A \) and put
\[
I = \bigcup_{i=0}^{\infty} I_i.
\]
For each \(i \in \mathbb{N}^* \), there is \(a_i \in I_i \setminus I_{i-1} \).

Since \(HI = I \ast HA \), there is a finitely generated ideal \(F = b_1A + \cdots + b_nA \) of \(A \) such that \(\{a_i : i \in \mathbb{N}^*\} \subseteq F \subseteq I \). Since the sequence \((I_i)_{i \in \mathbb{N}}\) is increasing, there is \(k \in \mathbb{N} \) such that \(b_1, \ldots, b_n \in I_k \) so \(F \subseteq I_k \) and \(\{a_i : i \in \mathbb{N}^*\} \subseteq I_k \), which is impossible.
Example. Let K be a commutative field and $\{Y_i : i \in \mathbb{N}\}$ a sequence of indeterminates. The ring $A = K[Y_i : i \in \mathbb{N}]$ is not noetherian because its ideal $I = (Y_i : i \in \mathbb{N})$ is not finitely generated. Suppose that $HI = I \ast HA$, by Lemma 3.1, there is a finitely generated ideal F of A such that $\{Y_i : i \in \mathbb{N}\} \subseteq F \subseteq I$, so $I = F$, which is impossible.

3.4. Proposition. Let I and J be ideals of the ring A, with $HJ = J \ast HA$ and $J \subseteq \sqrt{J}$. Then there is $n \in \mathbb{N}^*$ such that $J^n \subseteq I$.

Proof. Suppose that for each $m \in \mathbb{N}^*$, $J^m \nsubseteq I$, there are $b_{m1}, \ldots, b_{mm} \in J$ such that the product $b_{m1} \cdots b_{mm} \notin I$. Let C be the ideal of A generated by the countably subset $\{b_{mi} : m \in \mathbb{N}^*, 1 \leq i \leq m\}$, then $C \subseteq J$ and $C^m \nsubseteq I$ for every $m \in \mathbb{N}^*$. Since $HJ = J \ast HA$, by Lemma 3.1, there is a finitely generated ideal F of A such that $C \subseteq F \subseteq J \subseteq \sqrt{J}$, so $F \subseteq \sqrt{J}$. But F is finitely generated, there is $n \in \mathbb{N}^*$ such that $F^n \subseteq I$, so $C^n \subseteq I$, which is impossible.

Acknowledgment. I am indebted to Professor Zhongkui Liu for making known to me the paper [4] of W. Xue.

References

Received May 3, 2006