Beiträge zur Algebra und Geometrie Contributions to Algebra and Geometry Vol. 48, No. 1, pp. 217224 (2007) 

Circumscribed simplices of minimal mean widthKároly Böröczky jr and Rolf SchneiderAlfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, H1053 Budapest, Reáltanoda u. 1315, Hungary, email: carlos@renyi.hu; Mathematisches Institut, AlbertLudwigsUniversität, Eckerstr. 1, D79104 Freiburg i. Br., Germany, email: rolf.schneider@math.unifreiburg.deAbstract: It is proved that the minimal mean width of all simplices circumscribed about a convex body of given mean width attains its maximum precisely if the body is a ball. An analogous result holds for circumscribed parallelepipeds, with balls replaced by bodies of constant width. Classification (MSC2000): 52A20, 52A40 Full text of the article:
Electronic version published on: 14 May 2007. This page was last modified: 27 Jan 2010.
© 2007 Heldermann Verlag
