Eigenvalues of a Natural Operator of Centro-affine and Graph Hypersurfaces

Bang-Yen Chen

Department of Mathematics, Michigan State University
East Lansing, Michigan 48824–1027, USA
e-mail: bychen@math.msu.edu

Abstract. In this article we obtain optimal estimates for the eigenvalues of a natural operator K_{T^*} for locally strongly convex centro-affine and graph hypersurfaces. Several immediate applications of our eigenvalue estimates are presented. We also provide examples to illustrate that our eigenvalue estimates are optimal.

MSC 2000: 53A15, 53B20, 53B25 (primary); 53C40 (secondary)

Keywords: Centroaffine hypersurface, graph hypersurface, the operator, eigenvalue estimate.

1. Introduction

Throughout this article we assume $n \geq 2$. An immersed hypersurface $f : M \to \mathbb{R}^{n+1}$ in an affine $(n+1)$-space \mathbb{R}^{n+1} is called an affine hypersurface with relative normalization if there is a transversal vector field ξ such that $D\xi$ has its image in $f^*(T_pM)$, where D is the canonical flat connection on \mathbb{R}^{n+1}.

A hypersurface $f : M \to \mathbb{R}^{n+1}$ is called centro-affine if its position vector field is always transversal to $f^*(TM)$ in \mathbb{R}^{n+1}. In this case, for any vector fields X,Y tangent to M, one can decompose $D_X f^*(Y)$ into its tangential and transverse components. This is written as

$$D_X f^*(Y) = f^*(\nabla_X Y) + h^f(X,Y)f,$$

where h^f is a symmetric tensor of type $(0,2)$ and $\xi = f$.

0138-4821/93 $ 2.50 \copyright$ 2006 Heldermann Verlag
Throughout this article, we assume that h^f is definite, so h^f defines a semi-Riemannian metric on M. In order to consider only a positive definite metric we now make the following changes: if h^f is negative definite, we introduce a transversal vector field $\xi = -f$ and a $(0,2)$-tensor given by $h = -h^f$.

It is well-known that the centro-affine metric h is definite if and only if the hypersurface is locally strongly convex. For this the following terminology is used:

(i) The centro-affine hypersurface M is said to be of elliptic type if, for any point $f(p) \in \mathbb{R}^{n+1}$ with $p \in M$, the origin of \mathbb{R}^{n+1} and the hypersurface are on the same side of the tangent hyperplane $f_* (T_p M)$; in this case the centro-affine normal vector field is given by $\xi = -f$.

(ii) The centro-affine hypersurface M is said to be of hyperbolic type if, for any point $f(p) \in \mathbb{R}^{n+1}$, the origin of \mathbb{R}^{n+1} and the hypersurface are on the different side of the tangent hyperplane $f_* (T_p M)$; in this case the centro-affine normal vector field is given by $\xi = f$.

An affine hypersurface $f: M \to \mathbb{R}^{n+1}$ is called a graph hypersurface if we choose as affine transversal field a constant vector field. For a graph hypersurface we also have the decomposition (1.1) as well. Again in case that h is non-degenerate, it defines a semi-Riemannian metric, called the Calabi metric of the graph hypersurface.

Let $\hat{\nabla}$ denote the Levi-Civita connection of h and let K be the difference tensor $\nabla - \hat{\nabla}$ on M. Then, for each $X \in T_p M$, $K : Y \mapsto K(X,Y)$ is an endomorphism of $T_p M$. By taking the trace of K, one obtains a so-called Tchebychev form

$$T(X) := \frac{1}{n} \text{trace} \{ Y \mapsto K(X,Y) \}. \quad (1.2)$$

The Tchebychev vector field $T^\#$ can then be defined by

$$h(T^\#, X) = T(X). \quad (1.3)$$

The Tchebychev form and Tchebychev vector field play an important role in centro-affine differential geometry.

For each integer $k \in [2, n]$, we define an invariant $\hat{\theta}_k$ on the affine hypersurface M in the same way as in [1] (see Section 3 for details).

The main results of this article are the following optimal estimates for the eigenvalues of the operator $K_{T^\#}$:

(I) For a locally strongly convex centro-affine hypersurface M in \mathbb{R}^{n+1} we have:

(I-a) If $\hat{\theta}_k \neq \varepsilon$ at a point $p \in M$, then every eigenvalue of the operator $K_{T^\#}$ at p is greater than $(\frac{n-1}{n})(\varepsilon - \hat{\theta}_k(p))$.

(I-b) If $\hat{\theta}_k = \varepsilon$ at a point p, every eigenvalue of $K_{T^\#}$ at p is ≥ 0, where $\varepsilon = 1$ or -1 according to M is of elliptic or hyperbolic type.

(II) For a graph hypersurface M in \mathbb{R}^{n+1} we have:

(II-a) If $\hat{\theta}_k \neq 0$ at a point $p \in M$, every eigenvalue of the operator $K_{T^\#}$ at p is greater than $(\frac{1-n}{n})\hat{\theta}_k(p)$.

(II-b) If $\hat{\theta}_k = 0$ at a point $p \in M$, every eigenvalue of $K_{T^\#}$ at p is ≥ 0.
The proofs of the main results base on the equation of Gauss using the same idea introduced in earlier author’s articles [1, 2]. This is done in Section 4. Several immediate applications of our eigenvalue estimates of the operator $K_{T\#}$ are given in Section 5. In the last two sections, we provide some non-trivial examples to illustrate that our eigenvalue estimates are optimal for both centro-affine and graph hypersurfaces.

2. Preliminaries

We recall some basic facts about centro-affine and graph hypersurfaces. For the details, see [3, 4, 5, 6].

Let $f : M \to \mathbb{R}^{n+1}$ be a centro-affine hypersurface with centro-affine normal ξ. We assume that the centro-affine hypersurface is definite. As we already mentioned earlier, the centro-affine normal on the hypersurface is chosen in such way that the metric h is positive definite.

The centro-affine structure equations are given by
\begin{align}
D_X f_*(Y) &= f_*(\nabla_X Y) + h(X, Y)\xi; \\
D_X \xi &= \mp f_*(X),
\end{align}
where $D_X \xi = -f_*(X)$ or $D_X \xi = f_*(X)$ according to $\xi = -f$ or $\xi = f$ respectively.

The corresponding equations of Gauss and Codazzi are given respectively by
\begin{align}
R(X, Y)Z &= h(Y, Z)X - h(X, Z)Y; \\
(\nabla_X h)(Y, Z) &= (\nabla_Y h)(X, Z).
\end{align}
The cubic form is the totally symmetric $(0, 3)$-tensor field $C(X, Y, Z) = (\nabla_X h)(Y, Z)$.

Let $\hat{\nabla}$, \hat{K} and \hat{R} denote the Levi-Civita connection, the sectional curvature and the curvature tensor of h, respectively. The difference tensor K is then given by
\begin{equation}
K_X Y = K(X, Y) = \nabla_X Y - \hat{\nabla}_X Y,
\end{equation}
which is a symmetric $(1, 2)$-tensor field. The difference tensor \hat{K} and the cubic form C are related by
\begin{equation}
C(X, Y, Z) = -2h(K_X Y, Z).
\end{equation}

It is well-known that for centro-affine hypersurfaces we have
\begin{align}
h(K_X Y, Z) &= h(Y, K_X Z), \\
\hat{R}(X, Y)Z &= K_Y K_X Z - K_X K_Y Z + \varepsilon(h(Y, Z)X - h(X, Z)Y), \\
(\hat{\nabla} K)(X, Y, Z) &= (\hat{\nabla} K)(Y, Z, X) = (\hat{\nabla} K)(Z, X, Y),
\end{align}
where $\varepsilon = 1$ if M is of elliptic type and $\varepsilon = -1$ if M is of hyperbolic type. It follows from (2.7) that the endomorphism K_X is self-adjoint with respect to h.
When $f : M \to \mathbb{R}^{n+1}$ is a graph hypersurface, we have (1.1), (2.1), (2.4), (2.5), (2.6), (2.7) and (2.9) as well. However, (2.2), (2.3) and (2.8) shall be replaced by
\begin{align}
D_X \xi &= R(X,Y)Z = 0, \\
\hat{R}(X,Y)Z &= K_XK_YZ - K_YK_XZ.
\end{align}

3. Invariant $\hat{\theta}_k$ and relative K-null space

Let M be a centro-affine or graph hypersurface with positive definite metric h. Denote by $\hat{K}(\pi)$ the sectional curvature of a 2-plane section $\pi \subset T_pM$ relative to h. The scalar curvature $\hat{\tau}$ at p is then defined by
\begin{equation}
\hat{\tau}(p) = \sum_{1 \leq i < j \leq n} \hat{K}_{ij},
\end{equation}
where $\hat{K}_{ij} = \hat{K}(e_i \wedge e_j)$ and e_1, \ldots, e_n is an h-orthonormal basis of T_pM.

Assume that L^k is a k-plane section of T_pM and X a unit vector in L^k with respect to h. We choose an h-orthonormal basis $\{e_1, \ldots, e_k\}$ of L^k with $e_1 = X$. Then the k-Ricci curvature $\hat{S}_{L^k}(X)$ and the scalar curvature $\hat{\tau}(L^k)$ are defined respectively by
\begin{align}
\hat{S}_{L^k}(X) &= \hat{K}_{12} + \cdots + \hat{K}_{1k}, \\
\hat{\tau}(L^k) &= \sum_{1 \leq i < j \leq k} K_{ij}.
\end{align}

Obviously, \hat{S}_{L^2} and $\hat{\tau}(L^2)$ are nothing but the sectional curvature $\hat{K}(L^2)$. And \hat{S}_{L^n} and $\hat{\tau}(L^n)$ are the Ricci and scalar curvatures relative to h.

For each integer $k \in [2, n]$, we define the invariant $\hat{\theta}_k$ on M by (cf. [1, 2])
\begin{equation}
\hat{\theta}_k(p) = \left(\frac{1}{k-1}\right) \sup_{L^k, X} \hat{S}_{L^k}(X), \quad p \in T_pM,
\end{equation}
where L^k runs over all linear k-subspaces in the tangent space T_pM at p and X runs over all h-unit vectors in L^k.

The relative K-null space \mathcal{N}^K_p of M in \mathbb{R}^{n+1} is defined by
\begin{equation}
\mathcal{N}^K_p = \{X \in T_pM : K(X,Y) = 0 \text{ for all } Y \in T_pM\}.
\end{equation}
When $\dim \mathcal{N}^K_p$ is constant, $\mathcal{N}^K = \bigcup_{p \in M} \mathcal{N}^K_p$ defines a subbundle of the tangent bundle, called the relative K-null subbundle.

4. Optimal estimates for eigenvalues of the operator

For centro-affine hypersurface in \mathbb{R}^{n+1} we have the following result.

Theorem 4.1. Let $f : M \to \mathbb{R}^{n+1}$ be a locally strongly convex centro-affine hypersurface in \mathbb{R}^{n+1}. Then, for any integer $k \in [2, n]$, we have:
(1) If \(\hat{\theta}_k \neq \varepsilon \) at a point \(p \in M \), then every eigenvalue of \(K_{T^\#} \) at \(p \) is greater than \(\left(\frac{n-1}{n} \right) (\varepsilon - \hat{\theta}_k(p)) \).

(2) If \(\hat{\theta}_k(p) = \varepsilon \), every eigenvalue of \(K_{T^\#} \) at \(p \) is \(\geq 0 \).

(3) A nonzero vector \(X \in T_pM \) is an eigenvector of the operator \(K_{T^\#} \) with eigenvalue \(\left(\frac{n-1}{n} \right) (\varepsilon - \hat{\theta}_k(p)) \) if and only if \(\hat{\theta}_k(p) = \varepsilon \) and \(X \) lies in the relative \(K \)-null space \(N^p_{K} \) at \(p \), where \(\varepsilon = 1 \) or \(-1\) according to \(M \) is of elliptic or hyperbolic type.

Proof. Assume that \(f : M \to \mathbb{R}^{n+1} \) is a locally strongly convex centro-affine hypersurface in \(\mathbb{R}^{n+1} \). Let \(\{e_1, \ldots, e_n\} \) be an arbitrary \(h \)-orthonormal basis of \(T_pM \). From the definition of Tchebychev vector field, (2.8) and (3.1) we have

\[
2 \hat{\tau} = n(n-1)\varepsilon + h(K, K) - n^2 h(T^\#, T^\#). \tag{4.1}
\]

It is well-known that every endomorphism \(A \) of \(T_pM \) satisfies

\[
n h(A, A) \geq (\text{trace } A)^2, \tag{4.2}
\]

with equality holding if and only if \(A \) is proportional to the identity map \(I \). By applying (4.1) and (4.2), we obtain

\[
2 \hat{\tau} \geq n(n-1)\varepsilon - n(n-1) h(T^\#, T^\#) \tag{4.3}
\]

with the equality holding at \(p \) if and only if we have

(a) \(K_{T^\#} \) is proportional to the identity map and

(b) \(K_Z = 0 \) for \(Z \) perpendicular to \(T^\# \) at \(p \).

Let \(L_{i_1 \ldots i_k} \) be the \(k \)-plane section spanned by the orthonormal vectors \(e_{i_1}, \ldots, e_{i_k} \). It follows from (3.2) and (3.3) that

\[
\hat{\tau}(L_{i_1 \ldots i_k}) = \frac{1}{2} \sum_{i \in \{i_1, \ldots, i_k\}} \hat{S}_{L_{i_1 \ldots i_k}}(e_i), \tag{4.4}
\]

\[
\hat{\tau}(p) = \frac{(k-2)!(n-k)!}{(n-2)!} \sum_{1 \leq i_1 < \cdots < i_k \leq n} \hat{\tau}(L_{i_1 \ldots i_k}). \tag{4.5}
\]

By combining (3.4), (4.4) and (4.5) we find

\[
\hat{\tau} \leq \frac{n(n-1)}{2} \hat{\theta}_k. \tag{4.6}
\]

Thus (4.3) and (4.6) ensure that

\[
h(T^\#, T^\#) \geq \varepsilon - \hat{\theta}_k. \tag{4.7}
\]

Hence the Tchebychev vector field \(T^\# \) vanishes at a point \(p \) only when \(\hat{\theta}_k(p) \geq \varepsilon \). Therefore, if \(T^\#(p) = 0 \), statements (1) and (2) of Theorem 4.1 hold automatically.
Next, let us assume that $T^*(p) \neq 0$. Since K_{T^*} is self-adjoint with respect to h, we may choose an h-orthonormal basis e_1, \ldots, e_n of T_pM which diagonalizes the operator K_{T^*}. Let e^*_1 be the h-unit vector at p in the direction of T^* and let us choose h-orthonormal vectors e^*_2, \ldots, e^*_n at p perpendicular to T^*. Then we have

$$K_{e^*_1} = \begin{pmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_n \end{pmatrix}$$

and trace $K_{e^*_r} = 0$ for $r = 2, \ldots, n$.

Let us put $K^*_{ij} = h(K(e_i, e_j), e^*_r)$. Then (2.8) implies that

$$K_{ij} = \varepsilon - a_i a_j + \sum_{r=2}^n (K^*_{ij})^2 - \sum_{r=2}^n K^*_{ii} K^*_{jj}, \quad 1 \leq i \neq j \leq n. \tag{4.9}$$

Now, by applying the same argument as the proof of Theorem 1 of [1], we obtain

$$a_1(a_1 + \cdots + a_n) \geq (n-1)(\varepsilon - \hat{\theta}_k(p)) + a_1^2 \geq (n-1)(\varepsilon - \hat{\theta}_k(p)), \tag{4.10}$$

with both equality holding if and only if we have $\hat{S}_i(e_1) = \hat{\theta}_k(p)$ and $a_1 = K^*_{ij} = 0$ for $r = 2, \ldots, n; j = 2, \ldots, n$. The same inequality holds if the lower index 1 in (4.10) were replaced by any $j \in \{2, \ldots, n\}$. Hence, we have

$$K_{T^*} \geq \frac{n-1}{n}(\varepsilon - \hat{\theta}_k(p))I. \tag{4.11}$$

If $K_{T^*}X = \frac{n-1}{n}(\varepsilon - \hat{\theta}_k(p))X$ holds for some nonzero vector $X \in T_pM$, then X is an eigenvector of K_{T^*} with eigenvalue $(n-1)(\varepsilon - \hat{\theta}_k(p))/n$. Without loss of generality, we may choose $e_1 = X/\sqrt{h(X,X)}$. In this case we get

$$a_1(a_1 + \cdots + a_n) = (n-1)(\varepsilon - \hat{\theta}_k(p)). \tag{4.12}$$

On the other hand, from (4.10) and (4.12), we find $a_1 = 0$ and $\hat{\theta}_k(p) = \varepsilon$. Moreover, we know from (4.10) that e_1 lies in the relative K-null space N^K_p. Consequently, we obtain statements (1) and (2) of Theorem 4.1 and also one part of statement (3). The remaining part of statement (3) is obvious.

For graph hypersurfaces we have the following.

Theorem 4.2. Let $f : M \to \mathbb{R}^{n+1}$ be a graph hypersurface in \mathbb{R}^{n+1} with positive definite Calabi metric. Then, for any integer $k \in [2, n]$, we have:

1. If $\hat{\theta}_k \neq 0$ at a point $p \in M$, then every eigenvalue of K_{T^*} at p is greater than $(\frac{1-n}{n}) \hat{\theta}_k(p)$.
2. If $\hat{\theta}_k = 0$ at p, then every eigenvalue of K_{T^*} at p is ≥ 0.

(3) A nonzero vector $X \in T_p M$ is an eigenvector of the operator K_{T^*} with eigenvalue $\left(\frac{1-n}{n}\right) \hat{\theta}_k(p)$ if and only if we have $\hat{\theta}_k(p) = 0$ and $X \in N^K_p$.

Proof. For graph hypersurfaces in \mathbb{R}^{n+1} we have

$$\hat{\theta}_k(p) = \beta(p).$$

Thus, by applying the same argument given in Theorem 4.1, we obtain Theorem 4.2.

5. Some applications

When $k = 2$, statement (1) of Theorem 4.1 implies immediately the following.

Corollary 5.1. Let $f : M \to \mathbb{R}^{n+1}$ be a locally strongly convex centro-affine hypersurface in \mathbb{R}^{n+1}. If $\sup \hat{\theta}_{\xi} \neq \varepsilon$ at a point $p \in M$, then every eigenvalue of the operator K_{T^*} at p is greater than $\left(\frac{n}{n-1}\right) \left(\varepsilon - \sup \hat{\theta}(p)\right)$.

Similarly, if we denote by $\sup S(p)$ the supremum of the Ricci curvature of (M, h) at a point $p \in M$, then statement (1) of Theorem 4.1 with $k = n$ implies immediately the following.

Corollary 5.2. Let $f : M \to \mathbb{R}^{n+1}$ be a locally strongly convex centro-affine hypersurface in \mathbb{R}^{n+1}. If $\sup S \neq \varepsilon$ at a point $p \in M$, then every eigenvalue of the operator K_{T^*} at p is greater than $\left(\frac{n}{n-1}\right) \left(\varepsilon - \sup S(p)\right)$.

From Theorem 4.1 we also obtain the following.

Corollary 5.3. Let $f : M \to \mathbb{R}^{n+1}$ be a locally strongly convex centro-affine hypersurface in \mathbb{R}^{n+1}. If we have $\bigwedge^2 \hat{\theta} < \varepsilon$ on M for some integer $k \in [2, n]$, then every eigenvalue of K_{T^*} is positive.

Theorem 4.1 also gives rise to the following simple geometric characterization of hyper-ellipsoids and two-sheeted hyperboloids.

Corollary 5.4. An elliptic centro-affine hypersurface M in \mathbb{R}^{n+1} is centroaffinely equivalent to an open portion of a hyperellipsoid if and only if we have $nK_{T^*} = (n-1)(1 - \hat{\theta}_k)I$ on M for some integer $k \in [2, n]$.

Proof. Let $f : M \to \mathbb{R}^{n+1}$ be an elliptic centro-affine hypersurface in \mathbb{R}^{n+1}. If M is an open portion of a hyperellipsoid, then K vanishes identically which implies that $K_{T^*} = 0$. Hence, according to (2.10), (M, h) is of constant curvature one. Therefore we obtain $\hat{\theta}_2 = \cdots = \hat{\theta}_n = 1$. Consequently, we have $nK_{T^*} = (n-1)(1 - \hat{\theta}_k)I$ identically.

Conversely, let us assume that $nK_{T^*} = (n-1)(1 - \hat{\theta}_k)I$ holds identically for some integer $k \in [2, n]$, then statement (3) of Theorem 4.1 implies that every tangent vector of M lies in the relative K-null subbundle. In this case K vanishes identically on M. Consequently, by applying a theorem of Berwald [6, Section 7.1.1], we conclude that M is centroaffinely equivalent to an open portion of a hyper-ellipsoid centered at the origin.
Corollary 5.5. A hyperbolic centro-affine hypersurface M in \mathbb{R}^{n+1} is centroaffinely equivalent to an open portion of a two-sheeted hyperboloid if and only if, for some integer $k \in [2, n]$, we have $nK_T = (1 - n)(1 + \theta_k)I$ identically on M.

Proof. This can be done in the same way as Corollary 5.4. \qed

Similarly Theorem 4.2 implies the following.

Corollary 5.6. Let $f : M \to \mathbb{R}^{n+1}$ be a graph hypersurface with positive definite Calabi metric. If there exists an integer $k \in [2, n]$ such that $\hat{\theta}_k < 0$ holds on M, then every eigenvalue of the operator K_T is greater than $(1 - n/n)\sup K$ at p.

Corollary 5.7. Let $f : M \to \mathbb{R}^{n+1}$ be a graph hypersurface with positive definite Calabi metric. If there exists an integer $k \in [2, n]$ such that $\hat{\theta}_k < 0$ holds on M, then every eigenvalue of K_T is positive.

From Corollaries 5.3 and 5.7 we obtain the following.

Corollary 5.8. Let M be a Riemannian n-manifold. If there exists an integer $k \in [2, n]$ such that $\hat{\theta}_k(p) < 1$ at some point $p \in M$, then M cannot be realized as an elliptic proper affine hypersphere in \mathbb{R}^{n+1}.

Corollary 5.9. Let M be a Riemannian n-manifold. If there exists an integer $k \in [2, n]$ such that $\hat{\theta}_k(p) < -1$ at some point $p \in M$, then M cannot be realized as a hyperbolic proper affine hypersphere in \mathbb{R}^{n+1}.

Corollary 5.10. Let M be a Riemannian n-manifold. If there exists an integer $k \in [2, n]$ such that $\hat{\theta}_k(p) < 0$ at some point $p \in M$, then M cannot be realized as an improper affine hypersphere in \mathbb{R}^{n+1}.

6. Some examples of centro-affine hypersurfaces

In this section we provide some examples of locally strongly convex centro-affine hypersurfaces. From these examples we know that the eigenvalue estimates given in Theorem 4.1 are best possible.

Example 6.1. Let M be the elliptic locally strongly convex centro-affine hypersurface defined by:

$$e^{bs} \left(e^{(b-1)b}s, \sin(ax_2), \ldots, \sin(ax_n) \prod_{j=2}^{n-1} \cos(ax_j), \prod_{j=2}^{n} \cos(ax_j) \right),$$

with $a = \sqrt{1 - b^2}$, $b \in (0, 1)$. Then the affine metric h on M is

$$h = ds^2 + dx_2^2 + \cos^2(ax_2)dx_3^2 + \cdots + \prod_{j=2}^{n-1} \cos^2(ax_j)dx_n^2.$$
The Levi-Civita connection of \(h \) satisfies
\[
\hat{\nabla}_{\partial/\partial s} \frac{\partial}{\partial s} = \hat{\nabla}_{\partial/\partial x_k} \frac{\partial}{\partial x_k} = \hat{\nabla}_{\partial/\partial x_2} \frac{\partial}{\partial x_2} = 0,
\]
\[
\hat{\nabla}_{\partial/\partial x_i} \frac{\partial}{\partial x_j} = -a \tan(ax_i) \frac{\partial}{\partial x_j}, \quad 2 \leq i < j,
\]
\[
\hat{\nabla}_{\partial/\partial x_j} \frac{\partial}{\partial x_j} = a \sum_{k=2}^{j-1} \left(\frac{\sin(2ax_k)}{2} \prod_{l=k+1}^{j-1} \cos^2(ax_l) \right) \frac{\partial}{\partial x_k}, \quad j = 3, \ldots, n.
\] (6.3)

It follows from (6.1) and (6.2) that \(\hat{K}_{ij} = 0 \) and \(\hat{K}_{jk} = a^2 \) for \(2 \leq j \neq k \leq n \). Hence we have
\[
\hat{\theta}_n = \left(\frac{n-2}{n-1} \right) (1 - b^2).
\] (6.4)

On the other hand, from (6.1) and a straight-forward computation, we find
\[
\nabla_{\partial/\partial s} \frac{\partial}{\partial s} = \left(b + \frac{1}{b} \right) \frac{\partial}{\partial s}, \quad \nabla_{\partial/\partial x_j} \frac{\partial}{\partial x_j} = b \frac{\partial}{\partial x_j},
\]
\[
\nabla_{\partial/\partial x_i} \frac{\partial}{\partial x_j} = -a \tan(ax_i) \frac{\partial}{\partial x_j}, \quad 2 \leq i < j \leq n,
\]
\[
\nabla_{\partial/\partial x_j} \frac{\partial}{\partial x_j} = b \prod_{i=2}^{j-1} \cos^2(ax_i) \frac{\partial}{\partial s} + a \sum_{k=2}^{j-1} \left(\frac{\sin(2ax_k)}{2} \prod_{l=k+1}^{j-1} \cos^2(ax_l) \right) \frac{\partial}{\partial x_k}
\] (6.5)

for \(j = 2, \ldots, n \). By applying (2.5), (6.3) and (6.5) we find
\[
K \left(\frac{\partial}{\partial s}, \frac{\partial}{\partial s} \right) = \left(b + \frac{1}{b} \right) \frac{\partial}{\partial s}, \quad K \left(\frac{\partial}{\partial s}, \frac{\partial}{\partial x_j} \right) = b \frac{\partial}{\partial x_j},
\]
\[
K \left(\frac{\partial}{\partial x_j}, \frac{\partial}{\partial x_j} \right) = b \prod_{i=2}^{j-1} \cos^2(ax_i) \frac{\partial}{\partial s}, \quad K \left(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j} \right) = 0
\] (6.6)

for \(2 \leq i \neq j \leq n \). Therefore we obtain from (1.3), (6.2) and (6.6) that
\[
T^\# = \left(b + \frac{1}{nb} \right) \frac{\partial}{\partial s}, \quad K_{T^\#} \left(\frac{\partial}{\partial x_j} \right) = \lambda_j \frac{\partial}{\partial x_j}, \quad \lambda_j = b^2 + \frac{1}{n}
\] (6.7)

for \(j = 2, \ldots, n \). Consequently, we conclude that the eigenvalue \(\lambda_j \) of the operator \(K_{T^\#} \) associated with eigenvector \(\partial/\partial x_j \) satisfies
\[
\lambda_j - \frac{n-1}{n} (1 - \hat{\theta}_n) = \frac{2b^2}{n} \rightarrow 0 \quad \text{as} \quad b \rightarrow 0.
\]

Example 6.2. Consider the hyperbolic locally strongly convex centro-affine hypersurface defined by:
\[
e^{bs} \left(e^{-(b-1+b)s}, \sinh(ax_2), \ldots, \sinh(ax_n) \prod_{j=2}^{n-1} \cosh(ax_j), \prod_{j=2}^{n} \cosh(ax_j) \right)
\] (6.8)
with \(a = \sqrt{1 + b^2}, \ b \in (0, \infty). \) The induced affine metric \(h \) of this hypersurface is given by

\[
h = ds^2 + dx_2^2 + \cosh^2(ax_2)dx_3^2 + \cdots + \prod_{j=2}^{n-1} \cosh^2(ax_j)dx_n^2,
\]

which implies that \(\hat{K}_1 = 0, \hat{K}_jk = -a^2 \) for \(2 \leq j \neq k \leq n. \) Hence we have

\[
\hat{\theta}_n = \left(\frac{2 - n}{n - 1} \right) (1 + b^2).
\]

From (2.1), (2.5), (6.8) and a straightforward computation we find

\[
K \left(\frac{\partial}{\partial s}, \frac{\partial}{\partial s} \right) = \left(b - \frac{1}{b} \right) \frac{\partial}{\partial s}, \ K \left(\frac{\partial}{\partial s}, \frac{\partial}{\partial x_j} \right) = b \frac{\partial}{\partial x_j},
\]

\[
K \left(\frac{\partial}{\partial x_j}, \frac{\partial}{\partial x_j} \right) = b \prod_{i=2}^{n-1} \cosh^2(ax_i) \frac{\partial}{\partial s}, \ K \left(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j} \right) = 0
\]

for \(2 \leq i \neq j \leq n. \) Therefore we have

\[
T^\# = \left(b - \frac{1}{nb} \right) \frac{\partial}{\partial s}, \ K_{T^\#} \left(\frac{\partial}{\partial x_j} \right) = \left(b^2 - \frac{1}{n} \right) \frac{\partial}{\partial x_j}, \ j = 2, \ldots, n.
\]

Consequently, the eigenvalue \(\lambda_j \) of the operator \(K_{T^\#} \) associated with eigenvector \(\partial/\partial x_j \) satisfies

\[
\lambda_j + \frac{n - 1}{n} (1 + \hat{\theta}_n) = \frac{2b^2}{n} \rightarrow 0 \text{ as } b \rightarrow 0.
\]

Examples 6.1 and 6.2 show that the eigenvalue estimate given in statement (1) of Theorem 4.1 is optimal for locally strongly convex centro-affine hypersurfaces of both elliptic and hyperbolic types.

Example 6.3. Consider the following elliptic centro-affine locally strongly convex hypersurface:

\[
5 \left(\sin x_1, \sin x_2 \cos x_1, \ldots, \sin x_{n-1} \prod_{j=1}^{n-2} \cos x_j, \right.
\]

\[
e^{-\frac{b}{2} (b + \sqrt{b^2 - 4})} x_n \prod_{j=1}^{n-1} \cos x_j, \ e^{\frac{b}{2} (b + \sqrt{b^2 - 4})} x_n \prod_{j=1}^{n-1} \cos x_j \right)
\]

with \(b > 2. \) The affine metric of this hypersurface is given by

\[
h = dx_1^2 + \cos^2 x_1 dx_2^2 + \cdots + \prod_{j=1}^{n-1} \cos^2 x_j dx_n^2.
\]
It follows from (6.14) that \(\hat{\theta}_k = 1 \) for \(k = 2, \ldots, n \).

On the other hand, from (6.13) and a direct computation, we have

\[
K \left(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j} \right) = K \left(\frac{\partial}{\partial x_j}, \frac{\partial}{\partial x_n} \right) = 0, \quad K \left(\frac{\partial}{\partial x_n}, \frac{\partial}{\partial x_n} \right) = b \frac{\partial}{\partial x_n}
\]
(6.15)

for \(1 \leq i, j \leq n - 1 \), which ensures that

\[
T^\# = \left(\frac{b}{n} \prod_{j=1}^{n-1} \sec^2 x_j \right) \frac{\partial}{\partial x_n}, \quad K_{T^\#} \left(\frac{\partial}{\partial x_j} \right) = 0, \quad j = 1, \ldots, n - 1.
\]
(6.16)

Example 6.4. Let \(M \) be the hyperbolic locally strongly convex centro-affine hypersurface defined by

\[
\left(\sinh x_1, \sinh x_2 \cosh x_1, \ldots, \sinh x_{n-1} \prod_{j=1}^{n-2} \cos x_j, \right.
\]

\[
e^{\frac{1}{2}(b+\sqrt{b^2+4})x_n} \prod_{j=1}^{n-1} \cosh x_j, \left. e^{\frac{1}{2}(b-\sqrt{b^2+4})x_n} \prod_{j=1}^{n-1} \cosh x_j \right),
\]

with nonzero \(b \). Since the induced affine metric is given by

\[
h = dx_1^2 + \cosh^2 x_2 dx_2^2 + \cdots + \prod_{j=1}^{n-1} \cosh^2 x_j dx_n^2,
\]
(6.18)

thus we have \(\hat{\theta}_2 = \cdots = \hat{\theta}_n = -1 \).

On the other hand, by (6.17) and a straightforward computation, we find

\[
K \left(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j} \right) = K \left(\frac{\partial}{\partial x_j}, \frac{\partial}{\partial x_n} \right) = 0, \quad K \left(\frac{\partial}{\partial x_n}, \frac{\partial}{\partial x_n} \right) = b \frac{\partial}{\partial x_n}
\]
(6.19)

for \(1 \leq i, j \leq n - 1 \). Hence we obtain

\[
T^\# = \frac{b}{n} \prod_{j=1}^{n-1} \sech^2 x_j \frac{\partial}{\partial x_n}, \quad K_{T^\#} \left(\frac{\partial}{\partial x_j} \right) = 0, \quad j = 1, \ldots, n - 1.
\]
(6.20)

Clearly, Examples 6.3 and 6.4 illustrate that the estimate given in statement (2) of Theorem 4.1 is optimal for locally strongly convex centro-affine hypersurfaces of both elliptic and hyperbolic types.

7. Examples of graph hypersurfaces

Example 7.1. Consider the graph hypersurface \(M \) in \(\mathbb{R}^{n+1} \):

\[
\left(u_2, \ldots, u_n, \frac{s^4}{4} + \sum_{j=2}^{n} \frac{u_j^2}{4} \right)
\]
(7.1)
with constant affine normal ξ given by $(0, \ldots, 0, -1)$ and Calabi metric given by $h = ds^2 + s^{-2}(du_1^2 + \cdots + du_n^2)$.

A direct computation shows that $\hat{K}_{1j} = -s^{-2}$ and $\hat{K}_{ij} = -1$ for $2 \leq i \neq j \leq n$. Thus we get

$$\hat{\theta}_2 = \cdots = \hat{\theta}_n = \begin{cases} -\frac{1}{s^2} & \text{if } s^2 \geq 1; \\ -1 & \text{if } s^2 < 1. \end{cases} \quad (7.2)$$

From (7.1) and a straightforward computation, we find

$$K \left(\frac{\partial}{\partial s}, \frac{\partial}{\partial s} \right) = 3 \frac{\partial}{\partial s}, \quad K \left(\frac{\partial}{\partial s}, \frac{\partial}{\partial u_j} \right) = \frac{1}{s} \frac{\partial}{\partial u_j}, \quad 2 \leq i \neq j \leq n, \quad (7.3)$$

which yields

$$T^# = \frac{(n+2)}{ns} \frac{\partial}{\partial s}, \quad K_{T^#} \left(\frac{\partial}{\partial u_j} \right) = \lambda_j \frac{\partial}{\partial u_j}, \quad \lambda_j = \frac{(n+2)}{ns^2} \quad (7.4)$$

for $j = 2, \ldots, n$. Hence we obtain

$$\lambda_j - \left(1 - \frac{n}{n} \right) \hat{\theta}_k = \frac{3}{ns^2} \rightarrow 0 \quad \text{as } s \rightarrow \infty. \quad (7.5)$$

This example shows that the estimate given in statement (1) of Theorem 4.2 is optimal.

Example 7.2. Consider the graph hypersurface M in \mathbb{R}^{n+1}:

$$\left(u_2, \ldots, u_n, e^{u_1}, u_1 - \frac{1}{2} \sum_{j=2}^{n} u_j^2 \right) \quad (7.6)$$

with affine normal $\xi = (0, \ldots, 0, -1)$ and Calabi metric $h = du_1^2 + \cdots + du_n^2$. Obviously, we have $\theta_2 = \cdots = \theta_n = 0$. It follows from (7.6) that

$$K \left(\frac{\partial}{\partial u_1}, \frac{\partial}{\partial u_1} \right) = 0, \quad K \left(\frac{\partial}{\partial u_i}, \frac{\partial}{\partial u_j} \right) = 0 \quad (7.7)$$

for $i, j = 2, \ldots, n$. Thus we have

$$T^# = \frac{1}{n} \frac{\partial}{\partial u_1}, \quad K_{T^#} \left(\frac{\partial}{\partial u_j} \right) = 0 \quad (7.8)$$

for $j = 2, \ldots, n$.

The last example illustrates that the estimate given in statement (2) of Theorem 4.2 is optimal as well.

Acknowledgement. The author is very grateful to the referee for several valuable suggestions.
References

Received April 28, 2004; revised version Mai 12, 2005