Beitr\ EMIS ELibM Electronic Journals Beiträge zur Algebra und Geometrie
Contributions to Algebra and Geometry
Vol. 46, No. 1, pp. 19-42 (2005)

Previous Article

Next Article

Contents of this Issue

Other Issues

ELibM Journals

ELibM Home



Symmetry groups and fundamental tilings for the compact surface of genus $3^-$. 2. The normalizer diagram with classification

Emil Molnár and Eleonóra Stettner

Inst. Math., Dept. Geometry, Budapest Univ. Techn. Econ., H-1521. Budapest XI. Egry J. u. 1, e-mail:; Inst. Math. and Inf. Tech., Dept. Applied Math. and Physics, University of Kaposvár, H-7200 Kaposvár Guba S. u. 40, e-mail:

Abstract: This is a continuation of [S1] where the complete diagram of metric normalizers of the fundamental group {\bf G}$\otimes^3$ in Isom$\;H^2$ will be determined (Table 2). Thus we completely classify the symmetry groups {\bf N}/{\bf G} of the $3^-$ surface, i.e. the connected sum of 3 projective planes, into 12 normalizer classes, up to topological equivariance, by the algorithm for fundamental domains, developed in [LM1], [LM2], [LM3] and [S2], aided by computer. Our algorithm is applicable for any compact surface with exponential complexity by the genus $g$.

[S1] Stettner, E.: Symmetriegruppen und fundamentale Pflasterungen der Fläche vom Geschlecht -3. I. Maximale Gruppen mit Sechseckbereichen. Studia Sci. Math. Hung. {\bf 40} (2003), 41--57.

[LM1] Lu{\v c}i{\'c}, Z.; Moln{á}r, E.: Combinatorial classification of fundamental domains of finite area for planar discontinuous isometry groups. Arch. Math. {\bf 54} (1990), 511--520.

[LM2] Lu{\v c}i{\'c}, Z.; Moln{á}r, E.: Fundamental domains for planar discontinuous groups and uniform tilings. Geom. Dedicata {\bf 40} (1991), 125--143.

[LM3] Lu{\v c}i{\'c}, Z.; Moln{á}r, E.; Vasiljevi{\'c}, N.: Combinatorial structure of fundamental polygons of finite area for plane discontinuous groups. Manuscript 1998.

[S2] Stettner, E.: Die Computergestützte Klassifizierung der Flächeneinwickelungen in einem Vieleck vorgegebener Seitenanzahl. Annales Univ. Sci. Budapest {\bf 41} (1998), 103--115.

Full text of the article:

Electronic version published on: 11 Mar 2005. This page was last modified: 4 May 2006.

© 2005 Heldermann Verlag
© 2005--2006 ELibM and FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition