Beiträge zur Algebra und Geometrie Contributions to Algebra and Geometry Vol. 46, No. 1, pp. 241260 (2005) 

On $F_{q^2}$maximal curves of genus $\mathbf{\frac{1}{6}(q3)q}$Miriam Abdón and Fernando TorresDep. Matemática, PUCRio, Marquês de S. Vicente 225, 22453900, Rio de Janeiro, RJ, Brazil, email: miriam@mat.pucrio.br; IMECCUNICAMP, Cx. P. 6065, Campinas, 13083970SP, Brazil email: ftorres@ime.unicamp.brAbstract: We show that an $\fq$maximal curve of genus $\frac{1}{6}(q3)q>0$ is either a nonreflexive space curve of degree $q+1$ whose tangent surface is also nonreflexive, or it is uniquely determined, up to isomorphism, by a plane model of ArtinSchreier type whenever $ q\geq 27$. Keywords: finite field, maximal curve, nonreflexive variety, ArtinSchreier extension, additive polynomial Classification (MSC2000): 11G20; 14G05, 14G10 Full text of the article:
Electronic version published on: 11 Mar 2005. This page was last modified: 4 May 2006.
© 2005 Heldermann Verlag
