Beiträge zur Algebra und Geometrie Contributions to Algebra and Geometry Vol. 44, No. 1, pp. 127143 (2003) 

Chiral Hypermaps of Small GenusAntonio Breda D'Azevedo and Roman NedelaDepartment of Mathematics, University Aveiro, Aveiro,Portugal; School of Finance, Matej Bel University, 975 49 Banská Bystrica, SlovakiaAbstract: A hypermap $\cal H$ is a cellular embedding of a 3valent graph $\cal G$ into a closed surface which cells are 3coloured (adjacent cells have different colours). The vertices of $\cal G$ are called flags of $\cal H$ and let us denote by F the set of flags. An automorphism of the underlying graph which extends to a colour preserving selfhomeomorphism of the surface is called an automorphism of the hypermap. If the surface is orientable the automorphisms of $\cal H$ split into two classes, orientation preserving and orientation reversing automorphisms. It is not difficult to observe that $Aut({\cal H)}\le {\rm F}$ while for the group of orientation preserving automorphisms we have $Aut^+({\cal H})\le {\rm F}/2$. A hypermap satisfying $Aut^+({\cal H})={\rm F}/2=Aut({\cal H})$ will be called chiral. Hence chiral hypermaps have maximum number of orientation preserving symmetries but they are not ``mirror symmetric''. The main goal of this paper is to classify all chiral hypermaps on surfaces of genus at most four. It follows that they consist of the infinite families of chiral toroidal hypermaps of types $(2,3,6)$, $(2,4,4)$, $(3,3,3)$, and their duals, and two exceptional chiral hypermaps (up to duality) of types $(3,3,7)$ and $(4,4,5)$. These exceptional chiral hypermaps are members of regular hypermaps with metacyclic oriented monodromy groups. Full text of the article:
Electronic version published on: 3 Apr 2003. This page was last modified: 4 May 2006.
© 2003 Heldermann Verlag
