Beiträge zur Algebra und Geometrie Contributions to Algebra and Geometry Vol. 44, No. 1, pp. 245262 (2003) 

Hopf Mappings for Complex QuaternionsJohannes WallnerInstitut für Geometrie, Technische Universität Wien, Wiedner Hauptstr.\ 810/113, A1040 Wien, email: wallner@geometrie.tuwien.ac.atAbstract: The natural mapping of the right quaternion vector space $\H^2$ onto the quaternion projective line (identified with the foursphere) can be defined for complex quaternions $\H\otimes_\R\C$ as well. We discuss its exceptional set, the fiber subspaces, and how the linear automorphism groups of twodimensional quaternion vector spaces and modules induce groups of projective automorphisms of the image quadrics. Full text of the article:
Electronic version published on: 3 Apr 2003. This page was last modified: 4 May 2006.
© 2003 Heldermann Verlag
