Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, Vol. 43, No. 2, pp. 551-555 (2002)

On the Intersection of Invariant Rings

Thomas Bayer

Institut für Informatik, Technische Universität München, 80290 München, Germany, e-mail:, www:

Abstract: Based on Weitzenböck's theorem and Nagata's counterexample for Hilbert's fourteenth problem we construct two finitely generated invariant rings $R,S \subset K[x_{1},x_{2},\ldots,x_{n}]$ s.t. the intersection $R \cap S$ is not finitely generated as a $ K$-algebra.

Full text of the article:

[Previous Article] [Next Article] [Contents of this Number]
© 2002 ELibM for the EMIS Electronic Edition