Ikeda-Nakayama Modules*

Robert Wisbauer Mohamed F. Yousif Yiqiang Zhou

Heinrich-Heine-University, 40225 Düsseldorf, Germany
e-mail: wisbauer@math.uni-duesseldorf.de

The Ohio State University, Lima Campus, Ohio 45804, USA
e-mail: yousif.1@osu.edu

Memorial University of Newfoundland, St.John’s, NF A1C 5S7, Canada
e-mail: zhou@math.mun.ca

Abstract. Let $S M_R$ be an (S, R)-bimodule and denote $l_S(A) = \{s \in S : sA = 0\}$ for any submodule A of M_R. Extending the notion of an Ikeda-Nakayama ring, we investigate the condition $l_S(A \cap B) = l_S(A) + l_S(B)$ for any submodules A, B of M_R. Various characterizations and properties are derived for modules with this property. In particular, for $S = \text{End}(M_R)$, the π-injective modules are those modules M_R for which $S = l_S(A) + l_S(B)$ whenever $A \cap B = 0$, and our techniques also lead to some new results on these modules.

MSC 2000: 16D50 (primary); 16L60 (secondary)

1. Annihilator conditions

Let R and S be rings and $S M_R$ be a bimodule. For any $X \subseteq M$ and any $T \subseteq S$, denote

\[l_S(X) = \{s \in S : sX = 0\} \quad \text{and} \quad r_M(T) = \{m \in M : Tm = 0\}. \]

There is a canonical ring homomorphism $\lambda : S \to \text{End}(M_R)$ given by $\lambda(s)(x) = sx$ for $x \in M$ and $s \in S$. For any submodules A and B of M_R and any $t \in l_S(A \cap B)$, define

\[\alpha_t : A + B \to M, \quad a + b \mapsto ta. \]

Clearly, α_t is a well-defined R-homomorphism.

*The research was supported in part by NSERC of Canada and a grant from Ohio State University
Lemma 1. Let sM_R be a bimodule and A, B be submodules of M_R. The following are equivalent:

1. $l_S(A \cap B) = l_S(A) + l_S(B)$.
2. For any $t \in l_S(A \cap B)$, the diagram

$$
\begin{array}{ccc}
0 & \to & A + B & \to & M \\
& & \downarrow \alpha_t & & \\
& & M & & \\
\end{array}
$$

can be extended commutatively by $\lambda(s)$, for some $s \in S$.

Proof. $(1) \Rightarrow (2)$. Suppose (1) holds. For A, B, t given as in (2), write $t = u + v$ where $u \in l_S(A)$ and $v \in l_S(B)$. Then, for all $a \in A$ and $b \in B$,

$$
\alpha_t(a + b) = ta = (u + v)a = va = v(a + b) = \lambda(v)(a + b).
$$

$(2) \Rightarrow (1)$. It is clear that $l_S(A \cap B) \supseteq l_S(A) + l_S(B)$. Let $t \in l_S(A \cap B)$. Define $\alpha_t : A + B \to M$ as above. By (2), there exists $s \in S$ such that $\lambda(s)$ extends α_t.

Thus, for all $a \in A$ and $b \in B$, $ta = \alpha_t(a + b) = \lambda(s)(a + b) = s(a + b)$. It follows that $(t - s)a + (-s)b = 0$ for all $a \in A$ and $b \in B$. So, $t - s \in l_S(A)$ and $-s \in l_S(B)$, and hence $t = (t - s) - (-s) \in l_S(A) + l_S(B)$. \hfill \Box

Lemma 2. Let sM_R be a bimodule and A, B be submodules of M_R such that $A \cap B = 0$. The following are equivalent:

1. $S = l_S(A) + l_S(B)$.
2. The diagram

$$
\begin{array}{ccc}
0 & \to & A + B & \to & M \\
& & \downarrow \alpha_1 & & \\
& & M & & \\
\end{array}
$$

can be extended commutatively by $\lambda(s)$, for some $s \in S$.

Proof. $(1) \Rightarrow (2)$. Apply Lemma 1 with $t = 1$.

$(2) \Rightarrow (1)$. It suffices to show that $1 \in l_S(A) + l_S(B)$. Note that $\alpha_1 : A + B \to M$ is given by $\alpha_1(a + b) = a$ ($a \in A$ and $b \in B$). By (2), there exists $s \in S$ such that $\lambda(s)$ extends α_1. Arguing as in the proof of ‘$(2) \Rightarrow (1)$’ of Lemma 1, we have $1 = (1 - s) - (-s) \in l_S(A) + l_S(B)$. \hfill \Box

Lemma 3. Let sM_R be a bimodule such that sM is faithful and A, B be complements of each other in M_R. The following are equivalent:

1. $S = l_S(A) + l_S(B)$.
2. $S = l_S(A) \oplus l_S(B)$.
3. $M = A \oplus B$ and, for the projection f of M onto A along B, $f = \lambda(s)$ for some $s \in S$.

Proof. (1) ⇒ (3). By (1), we have \(S = 1_S(A) + 1_S(B) \). Write \(S = u + v \) where \(u \in 1_S(A) \) and \(v \in 1_S(B) \). It follows that \(a = uv \) for all \(a \in A \), \(b = ub \) for all \(b \in B \) and \(vB = uA = 0 \). Thus, \(B \subseteq r_M(v^2) \subseteq r_M(v^2) \cap A = 0 \). Since \(B \) is complement of \(A \) in \(M_R \), we have \(B = r_M(v) = r_M(v^2) \). Similarly, \(A = r_M(u) = r_M(u^2) \). Next we show that \((vu)M \cap (A + B) = 0\). For any \(z \in (vu)M \cap (A + B) \), write \(z = vu = a + b \), where \(x \in M \), \(a \in A \) and \(b \in B \). Noting that \(vu = uv \), we have that \(v^2u^2x = (vu)(a + b) = 0 \). So, \(u^2x \in r_M(v^2) = r_M(v) \), and this gives that \(u^2vx = vu^2x = 0 \). So, \(vu \in r_M(u^2) = r_M(u) \). Thus, \(z = vu = uB = 0 \). So, \((vu)M \cap (A + B) = 0\). Since \(A + B \) is essential in \(M_R \), \((vu)M = 0 \), and hence \(vu = 0 \) since \(S \) is faithful. So, \(uM \subseteq r_M(v) = B \) and \(vM \subseteq r_M(u) = A \), and hence \(M = vM + uM = A + B = A \oplus B \).

Let \(f \) be the projection of \(M \) onto \(A \) along \(B \). Then \(f(M) = A \) and \((1 - f)(M) = B \). Noting that \(S \) is faithful, we have \(1_S(A) = 1_S(f(M)) = \{ s \in S : \lambda(s)f(M) = 0 \} = \{ s \in S : \lambda(s)f = 0 \} \) and \(1_S(B) = 1_S((1 - f)(M)) = \{ s \in S : \lambda(s)(1 - f) = 0 \} \). Thus, \(\lambda(u)f = 0 \) and \(\lambda(v)(1 - f) = 0 \). It follows that

\[
0 = \lambda(v)(1 - f) = \lambda(1 - u)(1 - f) = (1 - \lambda(u))(1 - f) = 1 - f - \lambda(u),
\]

and thus \(f = 1 - \lambda(u) = 1 - u = \lambda(v) \).

(3) ⇒ (2). By (3), \(M = A \oplus B \). Let \(f \) be the projection of \(M \) onto \(A \) along \(B \). Then \(f^2 = f \in End(M_R) \), \(A = f(M) \) and \(B = (1 - f)(M) \). By (3), \(f = \lambda(s) \) for some \(s \in S \). It follows that \((s^2 - s)M = \lambda(s^2 - s)(M) = (f^2 - f)(M) = 0 \). So, \(s^2 = s \), since \(S \) is faithful. And so,

\[
1_S(A) = 1_S(f(M)) = 1_S(s)(M) = 1_S(s) = S(1 - s),
\]

and, similarly, \(1_S(B) = Ss \). Thus, \(S = 1_S(A) \oplus 1_S(B) \).

(2) ⇒ (1). Obvious. \(\square \)

A module \(M_R \) is called \(\pi \)-injective (or \(\text{quasi-continuous} \)) if every submodule is essential in a direct summand (C1) and, for any two direct summands \(M_1, M_2 \) with \(M_1 \cap M_2 = 0 \), \(M_1 \oplus M_2 \) is also a direct summand (C3) (see [8]). It is known that \(M_R \) is \(\pi \)-injective if and only if \(M = A \oplus B \) whenever \(A \) and \(B \) are complements of each other in \(M_R \) (see [8, Theorem 2.8])

Corollary 4. Let \(S \) be a bimodule such that \(S \) is faithful. The following are equivalent:

1. For any submodules \(A \) and \(B \) of \(M_R \) with \(A \cap B = 0 \), \(S = 1_S(A) + 1_S(B) \).
2. If \(A \) and \(B \) are complements of each other in \(M_R \), then \(S = 1_S(A) + 1_S(B) \).
3. If \(A \) and \(B \) are complements of each other in \(M_R \), then \(S = 1_S(A) \oplus 1_S(B) \).
4. \(M \) is \(\pi \)-injective and, for any \(f^2 = f \in End(M_R) \), \(f = \lambda(s) \) for some \(s \in S \).

Proof. (1) ⇔ (2) is obvious, and (2) ⇔ (3) ⇔ (4) is by Lemma 3. \(\square \)

For submodules \(A, B \) of \(M_R \), let

\[
\pi : M/(A \cap B) \rightarrow M/A \oplus M/B, \quad m + (A \cap B) \mapsto (m + A, m + B)
\]

be the canonical \(R \)-homomorphism. The next lemma can easily be verified.
Lemma 5. Let M_R be an R-module with $S = \text{End}(M_R)$ and A, B be submodules of M_R. The following are equivalent:

1. $l_S(A \cap B) = l_S(A) + l_S(B)$.

2. For any R-homomorphism $f : M/(A \cap B) \rightarrow M$, the diagram

$$
\begin{array}{ccc}
0 & \rightarrow & M/(A \cap B) \\
& & \pi \\
& & \downarrow f \\
& & M
\end{array}
$$

\[
\text{can be extended commutatively by some } g : M/A \oplus M/B \rightarrow M.
\]

2. Ikeda-Nakayama modules

A well known result of Ikeda and Nakayama [6] says that every right self-injective ring R satisfies the so called Ikeda-Nakayama annihilator condition, i.e., $l_R(A \cap B) = l_R(A) + l_R(B)$ for all right ideals A, B of R. Rings with the Ikeda-Nakayama annihilator condition, called right Ikeda-Nakayama rings, were studied in [2]. Extending this notion we call M_R an Ikeda-Nakayama module (IN-module) if

$$l_S(A \cap B) = l_S(A) + l_S(B)$$

for any submodules A and B of M_R where $S = \text{End}(M_R)$. Clearly, every quasi-injective module is an IN-module (Lemma 1) and every IN-module is π-injective (Corollary 4).

Proposition 6. The following are equivalent for a module M_R with $S = \text{End}(M_R)$:

1. M_R is an IN-module.

2. For any finite set $\{A_i : i = 1, \ldots, n\}$ of submodules of M_R,

$$l_S(A_1 \cap \cdots \cap A_n) = l_S(A_1) + \cdots + l_S(A_n).$$

3. For any submodules A, B of M_R and any $f \in S$ with $f(A \cap B) = 0$, the diagram

$$\begin{array}{ccc}
0 & \rightarrow & A + B \\
& & \downarrow \alpha_f \\
& & M
\end{array}$$

\[
\text{can be extended commutatively by some } g : M \rightarrow M.
\]

4. For any submodules A, B of M_R and any R-homomorphism $f : M/(A \cap B) \rightarrow M$, the diagram

$$\begin{array}{ccc}
0 & \rightarrow & M/(A \cap B) \\
& & \pi \\
& & \downarrow f \\
& & M
\end{array}$$

\[
\text{can be extended commutatively by some } g : M/A \oplus M/B \rightarrow M.
\]
Proof. (1) ⇒ (2) can be easily proved by using induction on \(n \); (2) ⇒ (1) is obvious; (1) ⇔ (3) is by Lemma 1; and (1) ⇔ (4) is by Lemma 5.

Remark 7. The equivalences (1) ⇔ (2) ⇔ (3) in Proposition 6 can be proved to hold for an arbitrary bimodule \(_SM_R \).

Many characterizations of \(\pi \)-injective modules are given in [13, 41.21 & 41.23]. In particular, the equivalence “(1) ⇔ (2)” of the next theorem is contained in [13, 41.21].

Theorem 8. The following are equivalent for a module \(M_R \) with \(S = \text{End}(M_R) \):

1. \(M \) is \(\pi \)-injective.
2. For any submodules \(A \) and \(B \) of \(M_R \) with \(A \cap B = 0 \), \(S = l_S(A) + l_S(B) \).
3. For any submodules \(A \) and \(B \) of \(M_R \) with \(A \cap B = 0 \) and any \(f \in S \), the diagram

 \[
 \begin{array}{ccc}
 0 & \rightarrow & A + B \\
 & \downarrow \alpha_f & \\
 & M & \\
 \end{array}
 \]

 can be extended commutatively by some \(g : M \rightarrow M \).
4. For any submodules \(A, B \) of \(M_R \) with \(A \cap B = 0 \), the diagram

 \[
 \begin{array}{ccc}
 0 & \rightarrow & A + B \\
 & \downarrow \alpha_1 & \\
 & M & \\
 \end{array}
 \]

 can be extended commutatively by some \(g : M \rightarrow M \).
5. For any submodules \(A, B \) of \(M_R \) with \(A \cap B = 0 \) and any \(f \in S \), the diagram

 \[
 \begin{array}{ccc}
 0 & \rightarrow & M \\
 & \downarrow f & \\
 & M/A \oplus M/B & \\
 \end{array}
 \]

 can be extended commutatively by some \(g : M/A \oplus M/B \rightarrow M \).
6. For any submodules \(A \) and \(B \) of \(M_R \) with \(A \cap B = 0 \), \(S_0 = l_{S_0}(A) + l_{S_0}(B) \) where \(S_0 \) is the subring of \(S \) generated by all idempotents of \(S \).
7. If \(A \) and \(B \) are complements of each other in \(M_R \), then \(S = l_S(A) \oplus l_S(B) \).

In each of the conditions (2)–(6), the pair \(A, B \) of submodules with \(A \cap B = 0 \) can be replaced by a pair \(A, B \) of submodules such that they are complements of each other in \(M_R \).

Proof. (2) ⇔ (3) ⇔ (4) ⇔ (5): By Lemmas 1, 2 and 5.

(1) ⇔ (2) ⇔ (7): By Corollary 4.

(1) ⇔ (6): Apply Corollary 4 to the bimodule \(_{S_0}M_R \).

One condition in the equivalence list of Theorem 8 says that, if \(A, B \) are complements of each other in \(M_R \), then the map \(\alpha_1 : A \oplus B \rightarrow M \) given by \(\alpha_1(a + b) = a \) extends to \(M \). This is an improvement of a result of Smith and Tercan [11, Thm.4] where it was proved that \(M_R \) is \(\pi \)-injective if and only if \(M \) satisfies \((P_2)\), i.e., if \(A \) and \(B \) are complement submodules of \(M \) with \(A \cap B = 0 \), then every map from \(A \oplus B \) to \(M \) extends to \(M \).
Remark 9. Two modules X and Y are said to be *orthogonal* and written $X \perp Y$ if they have no nonzero isomorphic submodules. A submodule N of the module M is called a *type submodule* if, whenever $N \subseteq P \subseteq M$, there exists $0 \neq X \subseteq P$ such that $N \perp X$. Two submodules X and Y of M are said to be *type complements of each other* in M if they are complements of each other in M such that $X \perp Y$. The module M is called TS if each of its type submodules is a direct summand of M. The module M is said to satisfy (T_3) if, whenever X and Y are type submodules as well as direct summands such that $X \perp Y$ is essential in M, $X \oplus Y = M$. As shown in [14], a module M satisfies both TS and (T_3) if and only if, whenever A, B are type complements of each other in M, $M = A \oplus B$. The module satisfying TS and (T_3) can be regarded as the ‘type’ analogue of the notion of π-injective modules. Several characterizations of this ‘type’ analogue of π-injective modules have been obtained in [14]. Some new characterizations of this notion can be obtained by restating Theorem 8 with ‘$A \cap B = 0$’ being replaced by ‘$A \perp B$’, ‘A, B are complements of each other in M’ replaced by ‘A, B are type complements of each other in M’, and “all idempotents of S” by “all idempotents f with $f(M) \perp \text{Ker}(f)$”.

Proposition 10. Let C be the center of $\text{End}(M_R)$. The following are equivalent:

1. For any submodules A, B of M_R with $A \cap B = 0$, $C = \text{I}_C(A) + \text{I}_C(B)$.
2. M_R is π-injective and every idempotent of $\text{End}(M_R)$ is central.
3. M_R is π-injective and every direct summand of M_R is fully invariant.

Proof. (1) \iff (2). Apply Corollary 4 to the bimodule CM_R.

(2) \Rightarrow (3). Let X be a direct summand of M_R. Then $X = f(M)$ for some $f^2 = f \in \text{End}(M_R)$. For any $g \in \text{End}(M_R)$, since f is central by (2), $g(X) = g(f(M)) = f(g(M)) \subseteq f(M) = X$. This shows that X is a fully invariant submodule of M_R.

(3) \Rightarrow (2). Let $f, g \in \text{End}(M_R)$ with $f^2 = f$. By (3), $g(f(M)) \subseteq f(M)$ and $g((1 - f)(M)) \subseteq (1 - f)(M)$. It follows that $fgf = gf$ and $(1 - f)g(1 - f) = g(1 - f)$. Thus, $g - gf = g(1 - f) = (1 - f)g(1 - f) = g - gf - fg + fg = g - gf - fg + gf = g - fg$. This shows that $fg = gf$. \hfill \square

3. Applications

In the rest of the paper, we discuss some applications of Theorem 8. Recall that a module M is called *continuous* if (C1) holds and every submodule isomorphic to a direct summand is itself a direct summand of M (C2). As a generalization of (C2)-condition, a module M_R is called GC^2 if, for any submodule N of M_R with $N \cong M$, N is a summand of M. Note that if R is the 2×2 upper triangular matrix ring over a field, then R_R satisfies both (C1) and (GC2) but it does not satisfy (C3).

Proposition 11. Let M_R be a module with $S = \text{End}(M_R)$. The following are equivalent:

1. For any family $\{A_i : i \in I\}$ of submodules of M_R with $\cap_{i \in I} A_i = 0$, $S = \Sigma_{i \in I} \text{I}_S(A_i)$.
2. M_R is finitely cogenerated and, for any finite family $\{A_i : i = 1, \ldots, n\}$ of submodules of M_R with $\cap_{i = 1}^n A_i = 0$, the map

$$M \overset{h}{\to} \bigoplus_{i = 1}^n M/A_i, \quad m \mapsto (m + A_1, \ldots, m + A_n),$$
Proof. It is straightforward to verify the equivalences (1) ⇔ (2) ⇔ (3).

Suppose that M_R satisfies both (1) and (GC2). By Theorem 8, M_R is π-injective. Thus, by [8, Lemma 3.14], M is continuous. To show that S is semilocal, let $\sigma : M \rightarrow M$ be a monomorphism. Then $M = \sigma(M) \oplus N$ for some $N \subseteq M$ (by the GC2-condition). It must be that $N = 0$ since M is finite dimensional (indeed, finitely cogenerated). So, σ is an isomorphism. Therefore, M satisfies the assumptions in Camps-Dicks [3, Thm.5], and so $\text{End}(M)$ is semilocal. But, by [8, Prop.3.5 & Lemma 3.7], idempotents of $S/J(S)$ lift to idempotents of S, and thus S is semiperfect. □

A ring R is called right Kasch if every simple right R-module embeds in R_R, or equivalently if $I(I) \neq 0$ for any maximal right ideal I of R.

Corollary 12. If R satisfies the condition that, for any set $\{A_i : i \in I\}$ of right ideals such that $\cap_{i \in I} A_i = 0$, $R = \Sigma_{i \in I} R(A_i)$ and R_R satisfies (GC2), then R is a semiperfect right continuous ring with a finitely generated essential right socle. In particular, R is left and right Kasch.

Proof. The first part follows from Theorem 11. The second part is by [9, Lemma 4.16]. □

A ring R is called strongly right IN if, for any set $\{A_i : i \in I\}$ of right ideals, $I_R(\cap_{i \in I} A_i) = \Sigma_{i \in I} I_R(A_i)$. The ring R is called right dual if every right ideal of R is a right annihilator. It is well-known that every two-sided dual ring is strongly left and right IN.

Corollary 13. The following are equivalent for a ring R:

1. R is a two-sided dual ring.
2. R is strongly left and right IN, and left (or right) GC2.
3. R is left and right finitely cogenerated, left and right IN, and left (or right) GC2.

(2) ⇒ (3): It is clear by Corollary 12.

(3) ⇒ (1): Suppose $\cap_{i \in I} A_i = 0$ where all A_i are right ideals R. Since R is right finitely cogenerated, $\cap_{i \in F} A_i = 0$ where F is a finite subset of I. Thus, $R = I_R(\cap_{i \in F} A_i) = \Sigma_{i \in F} I_R(A_i)$ because of the IN-condition, and hence $R = \Sigma_{i \in I} I_R(A_i)$. By Corollary 12, R is left and right Kasch. Since R is left and right IN, it follows from [2, Lemma 9] that R is a two-sided dual ring. □

The GC2-condition in Corollary 12 and in Corollary 13(3) can not be removed. To see this, let R be the trivial extension of \mathbb{Z} and the \mathbb{Z}-module \mathbb{Z}_{2^∞}. Then R has an essential minimal ideal, so R is finitely cogenerated and, for any set $\{A_i : i \in I\}$ of right ideals of R, $R = \Sigma_{i \in I} I_R(A_i)$. Moreover, R is IN. But R contains non-zero divisors which are not invertible, so R is not GC2. Clearly, R is not Kasch, so it is not semiperfect by Corollary 12. We do not know if the GC2-condition can be removed in Corollary 13(2).
Proposition 14. Suppose every finitely generated left ideal of R is a left annihilator. Then the following are equivalent:

1. Every closed right ideal of R is a right annihilator of a finite subset of R.
2. R_R satisfies (C1).
3. R is right continuous.

Proof. (3) \Rightarrow (2): Obvious.
(2) \Rightarrow (1): If I_R is closed in R_R, then $I = eR$ for some $e^2 = e \in R$. Hence $I = r(1 - e)$.
(1) \Rightarrow (2): Let I_R and K_R be complements of each other in R_R. Then, by (1), $I = r_R(a_1, \ldots, a_n)$ and $K = r_R(b_1, \ldots, b_m)$ where $a_i, b_j \in R$. Thus,

$$R = I_R(I \cap K) = I_R[r_R(a_1, \ldots, a_n) \cap r_R(b_1, \ldots, b_m)] = I_R[r_R(\sum_{i=1}^n Ra_i + \sum_{j=1}^m Rb_j)] = \sum_{i=1}^n Ra_i + \sum_{j=1}^m Rb_j = I_R(I) + I_R(K).$$

Thus, by Theorem 8, R_R is π-injective, and in particular R_R satisfies (C1).
(2) \Rightarrow (3): Since $r_R(I_R(F)) = F$ for all finitely generated left ideals F of R, R is right P-injective, and hence satisfies the right C2-condition. Thus, R is right continuous. \square

A ring R is called a right CF-ring (resp. right FGF-ring) if every cyclic (resp. finitely generated) right R-module embeds in a free module. The ring R is called right FP-injective if every R-homomorphism from a finitely generated submodule of a free right R-module F into R extends to F. Note that every right self-injective ring is right FP-injective, but not conversely. Also every finitely generated left ideal of a right FP-injective ring is a left annihilator (see [7]). The well known GFG problem asks whether every right GFG-ring is QF. It is known that every right self-injective, right FGF-ring is QF. In fact, Björk [1] and Tolskaya [12] independently proved that every right self-injective, right CF-ring is QF. On the other hand, Nicholson-Yousif [10, Theorem 4.3] shows that every right FP-injective ring for which every 2-generated right module embeds in a free module is QF. Our next corollary extends the two results.

Corollary 15. Suppose R is a right CF-ring such that every finitely generated left ideal is a left annihilator. Then R is a QF-ring.

Proof. Since R is right CF, every right ideal is a right annihilator of a finite subset of R. By Proposition 14, R_R is π-injective. Then, by [5, Corollary 2.9], R is right artinian. Clearly, R is two-sided mininjective. So, R is QF by [9, Cor.4.8]. \square

Corollary 16. Every right CF, right FP-injective ring is QF. In particular, every right FGF, right FP-injective ring is QF.

A ring R is called right FPF-ring if every finitely generated faithful right R-module is a generator of Mod-R, the category of all right R-modules. A ring is left (resp. right) duo if every left (resp. right) ideal is two sided. We conclude by noticing that every right FPF-ring which is left or right duo is π-injective. The next corollary follows from Theorem 8 and the proof of [4, 3.1A2, p.3.2].

Corollary 17. Let R be a right FPF-ring. If R is a left or right duo ring, then R_R is π-injective. In particular, every commutative FPF-ring is π-injective.
References

Received November 12, 2000