These pages are not updated anymore. For the current production of this journal, please refer to http://www.jstor.org/journals/0003486x.html.
Annals of Mathematics, II. Series Vol. 148, No. 3, pp. 803893 (1998) 

Finite functions and the necessary use of large cardinalsHarvey M. FriedmanReview from Zentralblatt MATH: The main result of the paper is that a certain finitary statement ${\cal B}$ can only be proved by using large cardinals. ${\cal B}$ is the finite version of the following assertion ${\cal A}$ (to which it is equivalent): Let $k,p>0$, and let $f_A:A\to A$ for each finite $A\subseteq \bbfN^k$ be such that for all $x\in\bbfN^k$, either $f_A\subseteq f_{A\cup \{x\} }$ or $\f_A(y)\>\f_{A\cup\{x\}}(y)\$ for some $y\in \bbfN^k$ with $\y\>\x\$, where $\z\= \max(z_1, \dots, z_k)$ for $z\in\bbfN^k$. Then for some $A$ and $E$ with $E=p$ and $E^k \subseteq A$, there are at most $k^k$ elements $t$ of $A$ for which one can find $z\in E$ such that $f_A(z)=t$ and $\t\<\min (z_1, \dots,z_k)$. ${\cal A}$ is provable from ZFC + ``for all $n$, there exists an $n$subtle cardinal''. This is shown by using the following key observation: Given $k>0$, $f_A: A\to A$ for each finite $A\subseteq\bbfN^k$, and an infinite cardinal $\lambda$, there exists $f:\lambda^k \to\lambda^k$ with the property that for every finite $X\subseteq\lambda^k$, one can find a finite $Y\subseteq \lambda^k$ such that $X\subseteq Y$ and the graph of $f\upharpoonright Y$ is order isomorphic to the graph of some $f_A(B)\subseteq \bbfN^{2k}$ is order isomorphic to $C\subseteq \bbfN^{2k}$ if there is an orderpreserving bijection $h$ from the field of $B$ (i.e., the set of all coordinates of elements of $B)$ onto the field of $C$ such that $h$ maps $B$ onto $C)$. Conversely, ${\cal A}$ implies that there exists a model $(W,R)$ of ZFC which satisfies the existence of $n$subtle cardinals for every standard $n$. The (rather technical) proof of this fact takes about twothirds of the paper. Reviewed by P.Matet Keywords: finite function; $n$subtle cardinals; large cardinals Classification (MSC2000): 03E05 03E55 03E30 Full text of the article:
Electronic fulltext finalized on: 9 Sep 2001. This page was last modified: 22 Jan 2002.
© 2001 Johns Hopkins University Press
