Properties of a new integral operator

Roberta Bucur, Loriana Andrei and Daniel Breaz

Abstract
In this paper, we derive sufficient conditions for the univalence, starlikeliness, convexity and some other properties in the class \(\mathcal{N}(\rho) \), for a new integral operator defined on the space of normalized analytic functions in the open unit disk.

1 Introduction
Let \(\mathcal{A} \) be the class of functions which are analytic in the open unit disk \(U = \{ z : |z| < 1 \} \) given by
\[
 f(z) = z + \sum_{k=2}^{\infty} a_k z^k, \quad z \in U.
\] (1.1)
Consider \(S \) the subclass of \(\mathcal{A} \) consisting of univalent functions. We denote by \(S^*(\alpha) \) the class of starlike univalent functions of order \(\alpha \) \((0 \leq \alpha < 1)\),
\[
 S^*(\alpha) = \left\{ f \in \mathcal{A} : \Re \left[\frac{zf'(z)}{f(z)} \right] > \alpha, \ z \in U \right\}.
\]
By \(K(\alpha) \) we denote a subclass of \(\mathcal{A} \) consisting of convex univalent functions of order \(\alpha \) \((0 \leq \alpha < 1)\) defined as
\[
 K(\alpha) = \left\{ f \in \mathcal{A} : \Re \left[\frac{zf''(z)}{f'(z)} + 1 \right] > \alpha, \ z \in U \right\}.
\]
Clearly, we have
(i) $S^*(0) = S^*$ the class of all starlike functions with respect to the origin;
(ii) $K(0) = K$ the class of all convex functions;
(iii) $K \subset S^* \subset S$, $K(\alpha) \subset S^*(\alpha)$, $K(\alpha) \subset K$ and $S^*(\alpha) \subset S^*$.

A function $f \in A$ is said to be in the class R_λ if and only if
$$\text{Re} \left[f'(z) \right] > \lambda,$$
for some λ, $0 \leq \lambda < 1$.

Recently, Frasin and Jahangiri [4] define the family $B(\mu, \lambda)$, $\mu \geq 0$, $0 \leq \lambda < 1$ consisting of functions $f \in A$ satisfying the condition
$$\left| f'(z) \left[\frac{z}{f(z)} \right]^{\mu} - 1 \right| < 1 - \lambda,$$ \hspace{1cm} (1.2)
for all $z \in U$.

It is obvious that: (i) $B(0, \lambda) = R_\lambda$; (ii) $B(1, \lambda) = S^*(\lambda)$;
(iii) $B(2, \lambda) = B(\lambda)$ (see Frasin and Darus [5]);
(iv) $B(2, 0) = S$ (see Ozaki and Nunokawa [3]).

Let $N(\rho)$ be the subclass of A that contains all the functions f which satisfy the inequality
$$\text{Re} \left[\frac{zf''(z)}{f'(z)} + 1 \right] < \rho, \hspace{0.5cm} \rho > 1, z \in U.$$

Uralegaddi, Ganigi and Sarangi in [11] and Owa and Srivastava in [7] introduced and studied the class $N(\rho)$.

In the present paper, we introduce a new integral operator
$$J_\alpha : A \times A \rightarrow A$$
defined by:
$$J_\alpha(f, g)(z) = \int_0^z \left[\frac{e^{f(t)}}{g'(t)} \right]^\alpha dt,$$ \hspace{1cm} (1.3)
where parameter α is a complex number, with $\text{Re} \alpha \geq 1$.

In this paper our purpose is to obtain univalence conditions, starlikeness properties, the order of convexity for the integral operator abovementioned and to show that the operator $J_\alpha(f, g)(z)$ is in the class $N(\rho)$, by using functions from the class $B(\mu, \lambda)$. Recently, various types of integral operators were studied by different authors (see [10, 2]), and some of them motivated us to come up with the integral operator defined in (1.3).

In the proof of our main results, we need to recall here the following:
Theorem 1.1. **(Becker [1])** If the function \(f \) is regular in the unit disk \(U \), \(f(z) = z + a_2 z^2 + \cdots \) and
\[
(1 - |z|^2) \cdot \left| \frac{zf''(z)}{f'(z)} \right| \leq 1
\]
for all \(z \in U \), then the function \(f \) is univalent in \(U \).

Lemma 1.1. **(General Schwarz Lemma [6])** Let \(f \) be regular function in the disk \(U_R = \{z \in \mathbb{C} : |z| < R\} \) with \(|f(z)| < M \), \(M \) fixed. If \(f \) has in \(z=0 \) one zero with multiply bigger than \(m \), then
\[
|f(z)| \leq \frac{M}{R^m} |z|^m, \quad z \in U_R.
\]
The equality case hold only if \(f(z) = e^{i\theta} \frac{M}{R^m} z^m \), where \(\theta \) is constant.

Lemma 1.2. **[9]** Let the functions \(p \) and \(q \) be analytic in \(U \) with \(p(0) = q(0) = 0 \), and let \(\delta \) be a real number. If the function \(q \) maps the unit disk \(U \) onto a region which is starlike with respect to the origin, the inequality
\[
\text{Re} \left[\frac{p'(z)}{q'(z)} \right] > \delta, \quad \text{for all } z \in U
\]
implies that
\[
\text{Re} \left[\frac{p(z)}{q(z)} \right] > \delta, \quad \text{for all } z \in U.
\]

2 **Main results**

The univalence condition for the operator \(I_\alpha(f,g) \) defined in (1.3) is proved in the next theorem, by using the Becker univalence criterion.

Theorem 2.1. Let \(\alpha \) be a complex number, with \(\Re \alpha \geq 1 \), \(f \in B(\mu, \lambda) \) and \(g \in A \). Suppose also that positive real numbers \(M \) (\(M \geq 1 \)) and \(N \) (\(N \geq 1 \)) are so constrained that
\[
|f(z)| < M \quad \text{and} \quad \left| \frac{g''(z)}{g'(z)} \right| \leq N, \quad z \in U.
\]
If
\[
|\alpha| \leq \frac{3\sqrt{3}}{2[(2 - \lambda)M^\mu + N]},
\]
then the function \(J_\alpha(f,g) \) is in the class \(S \).
Proof. Let the function \(h \) be defined by
\[
h(z) := J_\alpha(f, g)(z), \quad z \in U.
\] (2.3)

Obviously \(h \) is regular in \(U \) and \(h(0) = h'(0) - 1 = 0 \). From (2.3) we obtain
\[
\frac{zh''(z)}{h'(z)} = \alpha \left[zf'(z) - \frac{zg''(z)}{g'(z)} \right].
\] (2.4)

Hence, we get
\[
(1 - |z|^2) \cdot \left| \frac{zh''(z)}{h'(z)} \right| \leq (1 - |z|^2) \cdot |z| \cdot |\alpha| \left[|f'(z)| + \left| \frac{g''(z)}{g'(z)} \right| \right],
\] (2.5)

\[
\leq (1 - |z|^2) \cdot |z| \cdot |\alpha| \left[\left(f'(z) \left(\frac{z}{f(z)} \right)^\mu - 1 \right) \left| \frac{f(z)}{z} \right|^\mu + \left| \frac{g''(z)}{g'(z)} \right| \right].
\] (2.6)

By using the hypothesis of the theorem and applying the General Schwarz Lemma, we have
\[
(1 - |z|^2) \cdot \left| \frac{zh''(z)}{h'(z)} \right| \leq (1 - |z|^2) \cdot |z| \cdot |\alpha| \left[(2 - \lambda)M^\mu + N \right].
\] (2.7)

Considering the function
\[
t : [0, 1) \to \mathbb{R},
\]
\[
t(x) = x(1 - x^2), \quad x = |z|,
\]
we find that
\[
t(x) \leq \frac{2}{3\sqrt{3}}, \quad \text{for all } x \in [0, 1).
\] (2.8)

From (2.7), (2.8) and (2.6) we obtain
\[
(1 - |z|^2) \cdot \left| \frac{zh''(z)}{h'(z)} \right| \leq \frac{2|\alpha|}{3\sqrt{3}} \left[(2 - \lambda)M^\mu + N \right] \leq 1.
\] (2.9)

Finally, by applying Theorem 1.1 in (2.9) we yield that the function \(J_\alpha(f, g) \) is in the class \(S \).

In the following theorem we give sufficient conditions such that the integral operator \(J_\alpha(f, g) \in S^* \).
Theorem 2.2. Let \(\alpha \) be a complex number, with \(\Re \alpha \geq 1 \), \(f \in B(\mu, \lambda) \) and \(g \in A \). Suppose also that positive real number \(M \) \((M \geq 1) \) is so constrained that
\[
|f(z)| < M \quad \text{and} \quad \left| \frac{zg''(z)}{g'(z)} \right| < 1, \quad z \in U. \tag{2.10}
\]
If
\[
|\alpha| \leq \frac{1}{(2 - \lambda)M^\mu + 1}, \tag{2.11}
\]
then the function \(J_\alpha (f, g) \) is in the class \(S^* \).

Proof. For the function \(h \) be given by (2.3) we obtain
\[
\frac{zh'(z)}{h(z)} = z e^{\alpha f(z)} \int_0^z \left[e^{\alpha f(t)} \right]^\mu dt. \tag{2.12}
\]
Setting
\[
p(z) = zh'(z) \quad \text{and} \quad q(z) = h(z),
\]
we find that \(p(0) = q(0) = 0 \), and \(q \) satisfies the starlikeness condition of Lemma 1.2. Since,
\[
\frac{p'(z)}{q'(z)} = 1 + \alpha \left[z f'(z) - \frac{zg''(z)}{g'(z)} \right]
\]
we obtain
\[
\left| \frac{p'(z)}{q'(z)} - 1 \right| \leq |\alpha| \left[\left(\left| f'(z) \left(\frac{z}{f(z)} \right)^\mu \right| - 1 \right) + 1 \right] \left| \frac{f(z)}{z} \right|^\mu + \left| \frac{zg''(z)}{g'(z)} \right|. \tag{2.13}
\]
Also, since \(|f(z)| < M \), \(z \in U \), applying the Schwarz Lemma, we have
\[
\left| \frac{f(z)}{z} \right| \leq M, \quad \text{for all} \quad z \in U. \tag{2.14}
\]
By using the hypothesis of the Theorem and replacing (2.14) in inequation (2.13), we obtain
\[
\left| \frac{p'(z)}{q'(z)} - 1 \right| \leq |\alpha| \left[\left(\left| f'(z) \left(\frac{z}{f(z)} \right)^\mu \right| - 1 \right) + 1 \right] M^\mu |z| + 1 \leq |\alpha|[1 + (2 - \lambda) \cdot M^\mu] \leq 1.
\]
Thus, we have
\[
\Re \left[\frac{p'(z)}{q'(z)} \right] > 0, \quad z \in U \tag{2.15}
\]
and, applying Lemma 1.2, we find that
\[
\text{Re} \left[\frac{p(z)}{q(z)} \right] > 0, \quad z \in U.
\] (2.16)

This completes the proof of the theorem. \qed

Letting \(\mu = 1 \) in Theorem 2.2, we have

Corollary 2.1. Let \(\alpha \) be a complex number, with \(\text{Re} \alpha \geq 1 \), \(f \in S^*(\lambda) \) and \(g \in A \). Suppose also that positive real number \(M, M \geq 1 \) is so constrained that
\[
|f(z)| < M \quad \text{and} \quad \left| \frac{z g''(z)}{g'(z)} \right| < 1, \quad z \in U.
\]

If
\[
|\alpha| \leq \frac{1}{1 + (2 - \lambda)M},
\]
then the function \(J_\alpha(f, g) \) is in the class \(S^* \).

Letting \(\lambda = 0 \) in Corollary 2.1, we obtain

Corollary 2.2. Let \(\alpha \) be a complex number, with \(\text{Re} \alpha \geq 1 \), \(f \in S^* \) and \(g \in A \). Suppose also that positive real number \(M, M \geq 1 \) is so constrained that
\[
|f(z)| < M \quad \text{and} \quad \left| \frac{z g''(z)}{g'(z)} \right| < 1, \quad z \in U.
\]

If
\[
|\alpha| \leq \frac{1}{1 + 2M},
\]
then the function \(J_\alpha(f, g) \) is in the class \(S^* \).

Theorem 2.3. Let \(\alpha \) be a complex number, with \(\text{Re} \alpha \geq 1 \), \(f \in B(\mu, \lambda) \) and \(g \in A \). Suppose also that positive real numbers \(M \) \((M \geq 1) \) and \(N \) \((N \geq 1) \) are so constrained that
\[
|f(z)| < M \quad \text{and} \quad \left| \frac{g''(z)}{g'(z)} \right| < N, \quad z \in U.
\]

Then the function \(J_\alpha(f, g) \) is in the class \(K(\delta) \), where
\[
\delta = 1 - |\alpha|\left[N + (2 - \lambda) \cdot M^\mu \right] \quad \text{and} \quad 0 < |\alpha|\left[N + (2 - \lambda) \cdot M^\mu \right] \leq 1.
\]
Proof. By letting the function h defined in (2.3), from equation (2.18) we find that

$$
\left| \frac{zh''(z)}{h'(z)} \right| \leq |z| \cdot |\alpha| \left[\left| f'(z) \right| + \left| \frac{g''(z)}{g'(z)} \right| \right]
\leq |z| \cdot |\alpha| \left[\left| f'(z) \right| \left(\left| \frac{z}{f(z)} \right|^\mu - 1 \right) + \left| f(z) \right|^\mu + \left| \frac{g''(z)}{g'(z)} \right| \right].
$$

(2.17)

From the hypothesis and applying the Schwarz Lemma in inequation (2.17), we obtain

$$
\left| \frac{zh''(z)}{h'(z)} \right| \leq |\alpha|[N + (2 - \lambda) \cdot M^\mu] = 1 - \delta.
$$

This evidently completes the proof.

Letting $\mu = 1$ in Theorem 2.3, we have

Corollary 2.3. Let α be a complex number, with $\text{Re}\alpha \geq 1$, $f \in S^\ast(\lambda)$ and $g \in A$. Suppose also that positive real numbers M ($M \geq 1$) and N ($N \geq 1$) are so constrained that

$$
|f(z)| < M \quad \text{and} \quad \left| \frac{g''(z)}{g'(z)} \right| < N, \quad z \in U.
$$

Then the function $J_\alpha(f, g)$ is in the class $K(\delta)$, where

$$
\delta = 1 - |\alpha|[N + (2 - \lambda) \cdot M^\mu] \quad \text{and} \quad 0 < |\alpha|[N + (2 - \lambda)M] \leq 1.
$$

Letting $\delta = \lambda = 0$ in Corollary 2.3, we obtain

Corollary 2.4. Let α be a complex number, with $\text{Re}\alpha \geq 1$, $f \in S^\ast$ and $g \in A$. Suppose also that positive real numbers M ($M \geq 1$) and N ($N \geq 1$) are so constrained that

$$
|f(z)| < M \quad \text{and} \quad \left| \frac{g''(z)}{g'(z)} \right| < N, \quad z \in U.
$$

Then the function $J_\alpha(f, g)$ is in the class K, where

$$
|\alpha| = \frac{1}{2M + N}.
$$
Theorem 2.4. Let the functions $f, g \in A$, with f in the class $B(\mu, \lambda)$, $\mu \geq 0$, $0 \leq \lambda < 1$, and α a complex number, with $\text{Re} \alpha \geq 1$. If $|f(z)| < M$, for M a positive real number, $M \geq 1$, $z \in U$ and $\left| \frac{g''(z)}{g'(z)} \right| < 1$, then the integral operator $J_\alpha(f, g)$ defined by (1.3) is in the class $N(\rho)$, where

$$
\rho = |\alpha| [1 + (2 - \lambda) M^\mu] + 1.
$$

Proof. From (2.4) we obtain that

$$
\frac{z J''_\alpha(f, g)(z)}{J'_\alpha(f, g)(z)} = \alpha z \left[f'(z) - \frac{g''(z)}{g'(z)} \right]
$$

So,

$$
\text{Re} \left[\frac{z J''_\alpha(f, g)(z)}{J'_\alpha(f, g)(z)} + 1 \right] = \text{Re} \left[\alpha z \left(f'(z) - \frac{g''(z)}{g'(z)} \right) + 1 \right]
$$

$$
\leq |z| \cdot |\alpha| \left[|f'(z)| + \left| \frac{g''(z)}{g'(z)} \right| + 1 \right]
$$

$$
\leq |z| \cdot |\alpha| \left[|f'(z)| \left(\frac{z}{f(z)} \right)^\mu \left| \frac{f(z)}{z} \right|^\mu + 1 \right] + 1. \quad (2.18)
$$

Since f is in the class $B(\mu, \lambda)$, $|f(z)| < M$, from General Schwarz Lemma and from (2.18), we find that

$$
\text{Re} \left[\frac{z J''_\alpha(f, g)(z)}{J'_\alpha(f, g)(z)} + 1 \right] < |\alpha| \left[1 + \left(\left| f'(z) \left(\frac{z}{f(z)} \right)^\mu \right| - 1 \right) M^\mu \right] + 1
$$

$$
< |\alpha| [1 + (2 - \lambda) M^\mu] + 1 = \rho. \quad (2.19)
$$

We yield that the function $J_\alpha(f, g)$ is in the class $N(\rho)$.

For $\mu = 0$ in Theorem 2.4 we obtain:

Corollary 2.5. Let the functions $f, g \in A$, with f in the class R_λ, $0 \leq \lambda < 1$, and α a complex number, with $\text{Re} \alpha \geq 1$. If $|f(z)| < M$, for M a positive real number, $M \geq 1$, $z \in U$ and $\left| \frac{g''(z)}{g'(z)} \right| < 1$, then the integral operator $J_\alpha(f, g)$ defined by (1.3) is in the class $N(\rho)$, where $\rho = |\alpha| (3 - \lambda) + 1$.

References

Roberta BUCUR,
Department of Mathematics,
University of Pitești,
Târgul din Vale St., No.1, 110040 Pitești, România.
Email: roberta_bucur@yahoo.com

Loriana ANDREI,
Department of Mathematics and Computer Science,
University of Oradea,
1 Universitatii St., 410087 Oradea, România.
Email: lori_andrei@yahoo.com
Daniel BREAZ,
Department of Mathematics,
"1 Decembrie 1918" University of Alba Iulia,
N. Iorga St., No. 11-13, 510009 Alba Iulia, România.
Email: dbreaz@uab.ro