RELATION BETWEEN GROUPS WITH BASIS PROPERTY AND GROUPS WITH EXCHANGE PROPERTY

A. Al Khalaf, M. Alkadhi

Abstract

A group G is called a group with basis property if there exists a basis (minimal generating set) for every subgroup H of G and every two bases are equivalent. A group G is called a group with exchange property, if $x \notin \langle X \rangle \land x \in \langle X \cup \{y\} \rangle$, then $y \in \langle X \cup \{x\} \rangle$, for all $x, y \in G$ and for every subset $X \subseteq G$.

In this research, we proved the following: Every polycyclic group satisfies the basis property. Every element in a group with the exchange property has a prime order. Every p-group satisfies the exchange property if and only if it is an elementary abelian p-group. Finally, we found necessary and sufficient condition for every group to satisfy the exchange property, based on a group with the basis property.

1 Introduction

A generating set X is said to be minimal if it has no proper subset which forms a generating set. The subset X of a group G is called independent, if for all $x \in X$, $x \notin \langle X \setminus \{x\} \rangle$. Independent set X is called a basis subgroup $\langle X \rangle$. In 1978 Jones [5] introduced an initial study of semigroups with the basis property. Jones [5] states that if G is an inverse semigroup and $U \leq V \leq G$ then a U-basis for V is a subset X of V which is minimal such that $\langle U \cup X \rangle = G$.

Key Words: Groups, Basis property, Exchange property.
2010 Mathematics Subject Classification: Primary 20D25; Secondary 20D10.
Received: 31.07.2014
Accepted: 20.02.2015
So a minimal generating set for \(V \) is a \(\emptyset \)-basis. A basis property of universal algebra \(A \) means that every two minimal (with respect to inclusion) generating set (basis) of an arbitrary subalgebra of \(A \) have the same cardinality \([1]\).

2 Basis property

Definition 2.1 A group \(G \) is called a group with basis property if there exists a basis minimal (irreducible) generating sets (with respect to inclusion) for every subgroup \(H \) of \(G \) and every two bases are equivalent (i.e. they have the same cardinality) \([1]\).

Notice that finitely generated vector spaces have the property that all minimal generating sets have the same cardinality. Jones \([5]\) introduce another concept which is state for inverse semigroup.

Definition 2.2 An inverse semigroup \(S \) has the strong basis property if for any inverse subsemigroup \(V \) of \(S \) and inverse subsemigroup \(U \) of \(V \) any two \(U \)-bases for \(V \) have the same cardinality.

Let \((\mathbb{Z}, +)\) be an additive abelian group, then we can write \(\mathbb{Z} = \langle 1 \rangle = \langle 2, 3 \rangle \) even though \(2 \not\in \langle 3 \rangle \) and \(3 \not\in \langle 2 \rangle \). Thus \(\mathbb{Z} \) does not have the basis property. Hence free groups do not have the basis property. The first results on the basis property of groups was in \([6]\). The author proved that a group with basis property is periodic, all elements of such a group have prime power order, and solvable. Therefore by \([1]\) every finite \(p \)-group has a basis property, and the homomorphic image of every finite group with basis property is again a group with basis property, but in case of infinite group we have the following:

Remark 2.3 Let \(G = \sum_{i=1}^{\infty} \mathbb{Z}_{p^i} \) be a direct sum of a cyclic \(p \)-group \(P \), then one of homomorphic image is a quasicyclic group \(K = \mathbb{Z}_{p^\infty} \), which is not a group with basis property, but the group \(G \) is a group with basis property.

Lemma 2.4 Let \(G \) be a group in which every element has prime power order, let \(x \in G \) such that \(|x| = p^c \) and \(y \in G \) such that \(|y| = q^b \), \(p \neq q \) are primes. Then \(xy \neq yx \).

Proof. Suppose that \(xy = yx \), then \(xy \) is an element of order \(p^c q^b \), hence \(xy \) has a composite order in \(G \). This is contradiction with basis property \([1]\), so \(xy \neq yx \). \(\Box\)

Proposition 2.5 Let \(G \) be a finite nilpotent group. Then \(G \) is a group with basis property if and only if \(G \) is a primary group.

Proof. Suppose that \(G \) is a finite nilpotent group with basis property. From \([11]\) every finite nilpotent group is decomposable in a direct product of Sylow
subgroups. Then
\[G = G_1 \times G_2 \times \cdots \times G_m, \]
such that \(G_i \) is a \(p_i \)-group for some primes \(p_i \), \(p_i \neq p_j \) if \(i \neq j \). If \(m > 1 \), then in \(G \) there exists two commute elements with a prime power order. Hence we have a contradiction with lemma (2-4). Thus \(G \) is a primary group.

Conversely, if \(G \) is a primary group, then \(G \) is a group with basis property [5].

A classification of group with the basis property was announced by Dickson and Jones in [5], but as far as we can see this has yet to be published. However a classification of finite groups with the basis property was given by Al Khalaf [1] exploiting Higman’s result, this classification requires a technical condition on the \(p \)-group and he proved the following theorem:

Theorem 2.6 [1]. Let a finite group \(G \) be a semidirect product of a \(p \)-group \(P = \text{Fit}(G) \) (Fitting subgroup) of \(G \) by a cyclic \(q \)-group \(\langle y \rangle \), of order \(q^b \), where \(p \neq q \) (\(p \) and \(q \) are primes), \(b \in \mathbb{N} \). Then the group \(G \) has basis property if and only if for any element \(y \in \langle y \rangle \), \(y \neq e \) and for any invariant subgroup \(H \) of \(P \) the automorphism \(\varphi \) must define an isotopic representation on every quotient Frattini subgroup of \(H \).

In [4], the author used some common results from both group and module theory using Maschke, Clifford and Krull-Schmidt, to classify the group with basis property.

Finally Jones [7] studied basis property from the point of view exchange properties.

Theorem 2.7 [3] Let \(G \) be a semidirect product of abelian \(p \)-group \(P \) by a cyclic \(q \)-group \(\langle y \rangle \), of order \(q^b \), where \(p \neq q \) (\(p \) and \(q \) are primes), \(b \in \mathbb{N} \). Then the group \(G \) has basis property if and only if there exists a polynomial \(g(x) \in \mathbb{Z}[x] \) such that satisfy the following conditions:

1. The polynomial \(f(x) = \overline{\theta}(g(x)) \) is irreducible over the field \(GF(p) \)

 \[f(x) \mid x^{q^b} - 1 \] and \(f(x) \nmid x^{q^b - 1} - 1 \).

2. \(g^m(\varphi) = 0 \).

In this research we study special group with the basis property. The concept of exchange property and continued results as shown in [7] and [8].
Theorem 2.8 Let G be a finite polycyclic group such that G has a presentation \[9\]:

\[
G = \langle x, y : x^{p^c} = y^{q^b} = 1, \ y^{-1}xy = x^r \rangle,
\]

such that $p \neq q$ (p and q are primes) $b, c, r \in \mathbb{Z}^+$, $(p, r - 1) = 1$ and

\[
r^{q^b} \equiv 1 \pmod{p^c}, r \not\equiv 1 \pmod{p}, 0 \leq r \leq p^c.
\]

Then G is a group with the basis property if and only if it satisfies the following conditions:

1. $p \equiv 1 \pmod{q^b}$.
2. $r^{q^b} \not\equiv 1 \pmod{p}$.

Proof. Suppose that G is a group with the basis property. From (2−1) we have that G is a semidirect product of cyclic p-group $\langle x \rangle$, $|\langle x \rangle| = p^c$ by a cyclic q-group $\langle y \rangle$, where $p \neq q$ (p and q are primes) $b, c \in \mathbb{Z}^+$. Then from \[1\] G is a Frobenius group with kernel $\langle x \rangle$ and complement $\langle y \rangle$. Thus by \[3\] we see that $p \equiv 1 \pmod{q^b}$. Thus (2−3) holds.

Assume that

\[
r^{q^b} \equiv 1 \pmod{p}.
\]

Then $r^{q^b} = 1 + mp$ for some $m \in \mathbb{Z}^+$. Considering the non trivial elements $x^{p^{c-1}}, y^{q^{b-1}}$ and using (2−1) and (2−5) then we have:

\[
y^{-q^b} x^{p^{c-1}} y^{q^{b-1}} = \left(y^{-q^b} x y^{q^{b-1}} \right)^{p^{c-1}} = \left(y^{-q^b-1} y^{-1} xy^{q^{b-1}-1} \right)^{p^{c-1}} = \left(y^{-q^b-1} x y^{q^{b-1}-1} \right)^{p^{c-1}} = \cdots = x^{r^{q^b-1}} = x^{r^{p^{c-1}(1+mp)}} = x^{p^{c-1}m} = x^{p^{c-1}}.
\]

Hence the p-element $x^{p^{c-1}}$ commutes with the q-element in G, so we have a contradiction with lemma (2-4). Thus (2−4) holds.

Conversely, let G be a polycyclic group satisfying conditions (2−3), and (2−4). Then from \[9\] we see that G is an extension of cyclic p-group $\langle x \rangle$ of order p^c by cyclic q-group $\langle y \rangle$ of order q^b, $p \neq q$ (p and q are primes) $b, c \in \mathbb{Z}^+$. Thus $(|\langle x \rangle|, |\langle y \rangle|) = 1$ and $|G| = |\langle x \rangle| |\langle y \rangle|$, then $\langle x \rangle \cap \langle y \rangle = \{1\}$ and $G = \langle x \rangle \langle y \rangle$.
so \(G = \langle x \rangle \rtimes \langle y \rangle \). Since \(\langle x \rangle \unlhd G \) and \(\langle x \rangle \) is an abelian \(p \)-group, then by using theorem (2-7) we prove that \(G \) is a group with the basis property.

Now consider the polynomial \(g(x) = x - r \) over the ring \(\mathbb{Z} \). Denote that \(f(x) = \theta(g(x)) \). Then the polynomial \(f(x) \) is an irreducible over the field \(GF(p) \) and has \(r \) zeros. Thus by (2-2), and (2-4) we have \(p^q = 1 \), \(p^{q-1} \neq 1 \), hence by Bezout theorem the polynomial \(f(x) \) is divides \(x^{q-1} - 1 \), i.e. the condition 1) in theorem(2-7) holds for \(g(x) \). Now consider the automorphism \(\varphi \), which defines a semidirect product \(\langle x \rangle \rtimes \langle y \rangle \) and induced by \(y \) element, i.e.

\[
\varphi : a \rightarrow y^{-1} a y, \quad \forall a \in \langle x \rangle.
\]

From (2-1) we get

\[
\varphi(a) = a^r, \quad \forall a \in \langle x \rangle.
\]

Using additive form in \(\langle x \rangle \), then we have \(g(\varphi) = 0 \). Thus the condition 2) of theorem(2-7) for \(g(x) \) holds too. Hence \(G \) is a group with the basis property.

3 Exchange property

The fundamental property of generating operator \(\varphi \) of subspace of the vector space \(V \) over the field \(F \) that this operator satisfies exchange property.

Definition 3.1 Let \(V \) be a vector space, then \(\forall x, y \in V \) and for every subset \(X \subseteq V \) if \(x \notin \varphi(X) \) and if \(x \in \varphi(X \cup \{y\}) \), then \(y \in \varphi(X \cup \{x\}) \).

Theorem 3.2 Let \(G \) be a group with the exchange property, i.e. \(\forall x, y \in G \) and for every subset \(X \subseteq G \),

\[
\text{if } x \notin \langle X \rangle \land x \in \langle X \cup \{y\} \rangle, \text{ then } y \in \langle X \cup \{x\} \rangle.
\]

Then the order of every element \(a \in G, a \neq 1 \) is a prime.

Proof. First, we prove that every cyclic subgroup of \(G \) is simple, i.e. every cyclic subgroup does not contain non trivial normal subgroup.

Suppose that \(\{1\} \leq \langle x \rangle \leq \langle y \rangle \) for \(x, y \in G \). Then \(x \notin \{1\} \) and \(x \in \langle \{1\} \cup \{y\} \rangle \) such that substituting \(X = \{1\} \) in (3-1) we find \(y \in \langle \{1\} \cup \{x\} \rangle = \langle x \rangle \) and we get a contradiction with our assumption. Thus \(O(x) \in \{p, q\} \), \(\forall x \in G \setminus \{1\} \).

Theorem 3.3 Let \(G \) be a \(p \)-group such that \(p \) is a prime. Then \(G \) is a group with the exchange property if and only if \(G \) is elementary abelian \(p \)-group.
Proof. Suppose that G is a p-group with the exchange property. Then by theorem (3-2)

$$x^p = 1, \forall x \in G,$$

hence $G^p = \{1\}$ and by [10] $\Phi(G) = G^pG'$. Since G is a p-group, then

$$\Phi(G) = G', \Phi^2(G) = G'', \ldots$$

If $G' = \{1\}$, then G is an elementary abelian group.

Suppose that $G' \neq \{1\}$. Then there exist elements $a, b, c \in G$ such that

$$[a, b] = a^{-1}b^{-1}ab = c \neq 1.$$ (3-3)

Now assume that $c \in \langle a \rangle$, then $a \in \langle c \rangle$. Let consider the subgroup, which is generated by two elements a, b, i.e. $\langle a, b \rangle$. If $\langle a, b \rangle$ is a cyclic group, then it is commutative and we have a contradiction with (3-3), then $a \notin \langle b \rangle$ and $b \notin \langle a \rangle$. Hence the set $\{a, b\}$ forms a basis of group $\langle a, b \rangle$. Since $\langle a \rangle = \langle c \rangle$, so $\langle a, b \rangle = \langle c, b \rangle$ and by the basis property of G [6]. Thus we have that the set $\{c, b\}$ forms a basis of G and this is a contradiction with properties of the Frattini subgroup, i.e. $c \in \Phi(G)$.

Hence $c \notin \langle a \rangle$ and $c \in \langle a, b \rangle$, and by the exchange property we have $b \in \langle a, c \rangle$. But then $\langle a, b \rangle = \langle a, c \rangle$. So by the basis property for G and since $a \notin \langle b \rangle$, $b \notin \langle a \rangle$ we conclude that the set $\{a, c\}$ forms a basis for G. Hence this is a contradiction with properties of the the Frattini subgroup $\Phi(G)$, i.e. $c \in \Phi(G)$. Thus $[a, b] = 1$ and the group G is an elementary abelian p-group.

Conversely, suppose that a group G is an elementary abelian p-group, then we consider G as an additive group of a vector space over the field $GF(p)$.

Hence the exchange property is satisfied for a group G.

4 Intersection between the basis property and the exchange property

Example 4.1 Let S be the semilattice $\{a, b, 0\}$, where a, b are incomparable and $ab = 0$. Then S has unique basis, so S has basis property. But $0 \notin \langle a \rangle \cup \{b\}$ and $0 \notin \langle a \rangle$, $b \notin \langle a \rangle \cup \{0\}$. Hence S does not satisfy the exchange property.

Example 4.2 Let $G = \langle a \rangle$ be a cyclic group such that $|G| = p^2$, p is a prime. Then G is a group with the basis property, because it is a p-group, but it does not satisfy the exchange property.
Theorem 4.3. Let G be a finite group. Then G is a group with the exchange property if and only if one of the following conditions hold:

1. G is an elementary abelian p-group, p is a prime.

2. G is a semidirect product of an elementary abelian p-group P by a cyclic q-group $\langle y \rangle$, of order q, where $p \neq q$ (p and q are primes). Therefore G must satisfy the following relations:

$$
p \equiv 1 \pmod{q}, \quad y^{-1}ay = a^r, \quad r \in \mathbb{Z}^+,$$

$$r \neq 1 \pmod{p}, \quad r^q \equiv 1 \pmod{p}.$$

Proof. Suppose that G is a group with the exchange property. Then we consider two cases:

Firstly, if G is a primary group (p-group), p is a prime, then by theorem (3-3) G is an elementary abelian p-group for a prime p.

Secondly, if G is not primary group, then from the basis property in theorem (2-6), we see that G is a semidirect product (i.e., $G = P \rtimes \langle y \rangle$) of p-group P by a cyclic q-group $\langle y \rangle$, where $p \neq q$ (p and q are primes). Since P is a group with the exchange property, then by theorem (3-3) P is an elementary abelian p-group. Therefore by theorem (3-1) the group $\langle y \rangle$ has order q, q is a prime.

Suppose that $|P| = p^s$, $s \in \mathbb{Z}^+$. Since the element y is a regular operator on P, i.e., the operator φ induced by element y is a regular, then

$$p^s \equiv 1 \pmod{q}.$$

Assume that $a \in P$, $a \neq 1$. Consider the element $b = y^{-1}ay$, since the operator φ induced by element y is regular, then $b \neq a$. Assume that $b \in \langle a \rangle$, hence $b = a^r$, $r \neq 1 \pmod{p}$. From $y^q = 1$ we have $a^{r^q} = 1$, i.e., $r^q \equiv 1 \pmod{p}$.

Now let $b \notin \langle a \rangle$, so by the exchange property if $b \in \langle y, a \rangle$, then $y \in \langle a, b \rangle \leq P$. We get a contradiction with $y \notin P$. Thus the automorphism $\varphi_y : P \to P$ is regular and act on a group $\langle a \rangle$ of order p, hence $p \equiv 1 \pmod{q}$ and $p > q$. Since G is a group with the basis property, then by theorem (2-6) the representation $y \to \varphi_y$ is an isotopic with dimension 1, i.e., the matrix A of linear operator φ_y in some basis of vector space P which contains s elements has the following form:

$$A = \begin{pmatrix} \tau & 0 & \ldots & 0 \\ 0 & \tau & \ldots & 0 \\ 0 & 0 & \cdots & \tau \end{pmatrix},$$
such that π is an image of the element r under the conical homomorphism $\theta: \mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$, then
\[r \not\equiv 1 \pmod{p}, \quad \text{and} \quad r^q \equiv 1 \pmod{p}. \]

Conversely, if G is an elementary abelian p-group for a prime p, then G is a group with basis property. Using theorem(3-3), then it remains to prove that if P is an elementary abelian, and $\langle y \rangle$ has order q, where $p \neq q$ (p and q are primes), and if the following conditions hold
\[y^{-1}xy = x^r, \quad \forall x \in P, \]
\[p \equiv 1 \pmod{q}, \]
\[r \not\equiv 1 \pmod{p}, \]
\[r^q \equiv 1 \pmod{p}. \quad (4-1) \]

Then G is a group with the exchange property. Suppose that the set $X \subseteq G$ and $a, b \in G$ such that $a \notin \langle X \rangle$ and $a \in \langle X \cup \{b\} \rangle$. Now we prove that $b \in \langle X \cup \{a\} \rangle$. Let $G_1 = \langle X \cup \{b\} \rangle$ and we study the following cases:

If $\langle X \cup \{b\} \rangle \leq P$, then $G_1 \leq P$, G_1 satisfies the exchange property, because it is an elementary abelian p-group (by theorem(3-3)), hence $b \in \langle X \cup \{a\} \rangle$.

If $\langle X \cup \{b\} \rangle \not\leq P$, then suppose that the set $X \cup \{b\}$ contains element of order q. Now if X contains elements of order q, and since G is a semidirect product of p-group by cyclic $\langle y \rangle$. Then we can prove that the set X contains only one element of order q, (because if there exist two elements as $y^{*}a_1$, $y^{*}a_2$ in X of order q, then for some $w \in \mathbb{Z}$ there exists $c \in P$ such that
\[y^{*}a_2 = (y^{*}a_1)^w c. \]

Then $\langle y^{*}a_1, c \rangle = \langle y^{*}a_1, y^{*}a_2 \rangle$, hence we consider element $y^{*}a_2$ as $c \in P$. Now suppose that the set $X = \{x_1, x_2, \ldots, x_n\}$ such that $x_2, \ldots, x_n \in P$, $x_1 \notin P$. Then the Fitting subgroup $F(\langle X \rangle)$ of group $\langle X \rangle$ is generated by the set $\{x_2, \ldots, x_n\}$ and the image of this set under the automorphism $\varphi^m_{x_1}, m \in \mathbb{Z}$.

Since the group P is an abelian group, then the Fitting subgroup $F(\langle X \rangle)$ is generated by the set $\{x_2, \ldots, x_n\}$ and the image of this set under the automorphism $\varphi^m_{x_1}$ and by (4-1) this is the power of the same elements x_2, \ldots, x_n. In another words, the group $F(\langle X \rangle)$ is generated by x_2, \ldots, x_n if these elements are exists. So by our assumption $a \in \langle X \cup \{b\} \rangle$. Then there exists a word $u(x_1, x_2, \ldots, x_n)$ such that $a = u(x_1, x_2, \ldots, x_n, b)$ and by (4-1) we have
\[a = v(x_1, x_2, \ldots, x_n)b^w, \quad (4-2) \]
such that \(v(x_1, x_2, \ldots, x_n) \) is a word. If \(b^w = e \), then by (4-2) we have

\[
a = v(x_1, x_2, \ldots, x_n) \in \langle X \rangle.
\]

Thus we get a contradiction with our assumption for \(a \), so we assume that \(b^w \neq e \). Since a group \(P \) is an elementary abelian \(p \)-group, then \(\langle b^w \rangle = \langle b \rangle \), so by (4-2) we have

\[
b \in \langle b^w \rangle = \langle v(x_1, x_2, \ldots, x_n)^{-1} a \rangle \subseteq \langle X \cup \{a\} \rangle.
\]

Finally, let \(X \subseteq P \). Since \(X \cup \{b\} \nsubseteq P \), then \(b \) is element of order \(q \). Suppose that \(G_1 = \langle X \cup \{b\} \rangle \) is a semidirect product of a group \(\langle X \rangle \) by \(\langle b \rangle \). Then from \(a \in \langle X \cup \{b\} \rangle \) we have the following for \(w \in \mathbb{Z} \) and \(c \in \langle X \rangle \)

\[
a = b^w c. \quad (4-3)
\]

If an element \(a \) is a \(q \)-element, then \(b^w \neq e \) and since \(\langle b \rangle = \langle b^w \rangle \) we get

\[
b \in \langle b^w \rangle = \langle c^{-1} a \rangle \subseteq \langle X \cup \{a\} \rangle.
\]

If \(a \) is \(p \)-element, then by (4-3) we have \(b^w = e \) and \(a = c \in \langle X \rangle \) which is a contradiction with \(a \notin \langle X \rangle \). Thus we study all cases. Hence \(G \) is a group with change property.

5 Acknowledgements

The authors gratefully acknowledge the partial financial support from the Deanship of Academic Research (Project No.331201) at Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia.

References

Al Khalaf Ahmad,
Department of Mathematics, College of Sciences
Al-Imam Mohammad Ibn Saud Islamic University
P.O. Box 90950, Riyadh, Saudi Arabia.
Email: akhalaf59@gmail.com

Alkadhi Mohammed
Department of Mathematics, College of Sciences
Al-Imam Mohammad Ibn Saud Islamic University
P.O. Box 90950, Riyadh, Saudi Arabia.
Email: malki2@yahoo.com