ASSOCIATED PRIMES OF TOP LOCAL HOMOLOGY MODULES WITH RESPECT TO AN IDEAL

SH. REZAEI

Abstract. Let \((R, \mathfrak{m})\) be a local ring, \(a\) be an ideal of \(R\) and \(M\) be a non-zero Artinian \(R\)-module with \(\text{Ndim}_R M = n\). In this paper we determine the associated primes of the top local homology module \(H^a_n(M)\).

1. Introduction

Throughout this paper assume that \((R, \mathfrak{m})\) is a commutative Noetherian local ring, \(a\) is an ideal of \(R\) and \(M\) is an \(R\)-module. In [2] Cuong and Nam defined the local homology modules \(H^a_i(M)\) with respect to \(a\) by

\[H^a_i(M) = \lim_{\to} \text{Tor}_R^i(R/\mathfrak{a}^n, M). \]

This definition is dual to Grothendieck’s definition of local cohomology modules and coincides with the definition of Greenless and May in [6] for an Artinian \(R\)-module \(M\). For basic results about local homology we refer the reader to [2, 3] and [13]; for local cohomology see [1].

In [8] Macdonald and Sharp studied the top local cohomology module with respect to the maximal ideal and showed that \(\text{Att}(H^\mathfrak{m}_n(N)) = \{ p \in \text{Ass} N : \dim R/p = n \}\), where \(N\) is a finitely generated \(R\)-module of dimension \(n\). Cuong and Nam proved in [2] a dual result stating that

\[\text{Ass}_R(H^\mathfrak{m}_n(M)) = \{ p \in \text{Att}_R(M) : \dim R/p = d \} \]

for a non-zero Artinian \(R\)-module \(M\) of Noetherian dimension \(d\). In this paper we study the top local homology module \(H^a_n(M)\), where \(M\) is a non-zero Artinian \(R\)-module of Noetherian dimension \(n\) and \(a\) is an arbitrary ideal of \(R\). The module \(H^a_n(M)\) is called a top local homology module because \(\max\{ i : H^a_i(M) \neq 0 \} \leq n \) by [2, Proposition 4.8].

A non-zero \(R\)-module \(M\) is called secondary if the multiplication map by any element \(a\) of \(R\) is either surjective or nilpotent. A secondary representation of the \(R\)-module \(M\) is an expression for \(M\) as a finite sum of secondary modules. If such a representation exists, we will say that \(M\) is representable. A prime ideal \(p\) of \(R\)
is said to be an attached prime of M if $p = (N :_R M)$ for some submodule N of M. If M admits a reduced secondary representation $M = S_1 + S_2 + \ldots + S_n$, then the set of attached primes $\text{Att}_R(M)$ of M is equal to $\{\sqrt{0:_R S_i} : i = 1, \ldots, n\}$. Note that every Artinian R-module M is representable and minimal elements of the set $V(\text{Ann}(M))$, the set of prime ideals of R containing ideal $\text{Ann}(M)$, belong to $\text{Att}(M)$. It is well known that if N is a submodule of Artinian R-module M, then $\text{Att}(M/N) \subseteq \text{Att}(M) \subseteq \text{Att}(N) \cup \text{Att}(M/N)$ (See [9, Section 6]).

We now recall the concept of Noetherian dimension $\text{Ndim}_R(M)$ of an R-module M. For $M = 0$ we define $\text{Ndim}_R(M) = -1$. Then by induction, for any integer $t \geq 0$, we define $\text{Ndim}_R(M) = t$ when

i) $\text{Ndim}_R(M) < t$ is false, and

ii) for every ascending chain $M_1 \subseteq M_2 \subseteq \ldots$ of submodules of M there exists an integer m_0 such that $\text{Ndim}_R(M_{m+1}/M_m) < t$ for all $m \geq m_0$.

Thus M is non-zero and finitely generated if and only if $\text{Ndim}_R(M) = 0$. If M is Artinian module, then $\text{Ndim}_R(M) < \infty$. (For more details see [7] and [11]).

Following [5], for any R-module M, we define the cohomological dimension of M with respect to a as

$$\text{cd}(a, M) = \max\{i : H^i_a(M) \neq 0\}.$$

By [1, Theorem 6.1.2 and Theorem 6.1.4], we have $\text{cd}(a, M) \leq \dim M$ and $\text{cd}(m, M) = \dim M$. We will call

$$\text{hd}(a, M) := \max\{i : H^i_a(M) \neq 0\}$$

the homological dimension of M with respect to a. It follows from [2, Propositions 4.8 and 4.10] that if M is an Artinian R-module, then $\text{hd}(a, M) \leq \text{Ndim}_R(M)$ and $\text{hd}(m, M) = \text{Ndim}_R(M)$.

Throughout the paper, for an R-module M, $E(R/m)$ denotes the injective envelope of R/m and $D(.)$ denotes the Matlis duality functor $\text{Hom}_R(., E(R/m))$. It is well known that $\dim D(M) = \dim M$. Also, if M is an Artinian R-module, then $M \simeq D D(M)$ and $D(M)$ is a Noetherian \hat{R}-module. (See [1, Theorem 10.2.19] and [10, Theorem 1.6(5)]).

Note that if M is an Artinian R-module, then $H^i_a(M) \simeq D(H^i_D(M))$ for all i (See [2, Proposition 3.3(ii)]), and therefore $\text{hd}(a, M) = \text{cd}(a, D(M))$. Thus $\text{hd}(a, M) \leq \dim D(M) = \dim M$.

The main result of this paper shows that if M is a non-zero Artinian R-module such that $\text{Ndim}_R(M) = n$, then

$$\text{Ass}_R(H^n_a(M)) = \{\mathfrak{p} \cap R : \mathfrak{p} \in \text{Att}_R M \text{ and } \text{cd}(a \hat{R}, \hat{R}/\mathfrak{p}) = n\}.$$

2. THE RESULTS

To prove our main result, we need the following lemmas.

Lemma 2.1. Let (R, m) be a local ring, a be an ideal of R and $0 \to L \to M \to N \to 0$ be an exact sequence of Artinian R-modules. Then $\text{hd}(a, M) = \text{Max}\{\text{hd}(a, L), \text{hd}(a, N)\}$.
Proof. Since $D(M)$ is Noetherian \hat{R}-module, by \cite[Corollary 2.3(i)]{5}, $\cd(aR, D(M)) \leq \cd(a, D(M))$. Hence by the Independence Theorem (\cite[Theorem 4.2.1]{1}), $\cd(a, D(N)) \leq \cd(a, D(M))$. Therefore $\hd(a, N) \leq \hd(a, M)$. From the long exact sequence

$$
\mathcal{H}^{i+1}_a(L) \rightarrow \mathcal{H}^i_a(M) \rightarrow \mathcal{H}^i_a(N) \rightarrow \mathcal{H}^i_a(L) \rightarrow \mathcal{H}^i_a(M) \rightarrow \ldots
$$

we deduce that $\hd(a, L) \leq \hd(a, M)$. Hence $\Max\{\hd(a, L), \hd(a, N)\} \leq \hd(a, M)$. From the above long exact sequence we also infer that $\hd(a, M) \leq \Max\{\hd(a, L), \hd(a, N)\}$ and the proof is complete.

Lemma 2.2. Let (R, m) be a complete local ring, a be an ideal of R and M be a non-zero Artinian module. Then $\cd(a, R/p) \leq \hd(a, M)$ for all $p \in \Att(M)$.

Proof. Since $D(M)$ is a Noetherian R-module and $\Supp(R/p) \subseteq \Supp(D(M))$ for all $p \in \Ass D(M)$, by \cite[Theorem 2.2]{5} we infer that $\cd(a, R/p) \leq \cd(a, D(M))$ for all $p \in \Ass D(M)$. Since $\Att(M) = \Ass D(M)$ and $\cd(a, D(M)) = \hd(a, M)$, we obtain $\cd(a, R/p) \leq \hd(a, M)$ for all $p \in \Att(M)$.

Lemma 2.3. Let (R, m) be a local ring, a be an ideal of R and M be an Artinian R-module. Then $\hd(a, M) \leq \cd(a, R/\Ann M)$.

Proof. Let $\hat{R} := R/\Ann M$. By \cite[Theorem 3.3]{12}, $\mathcal{H}^i_a(M) \simeq \mathcal{H}^{\hat{a}R_i}_a(M)$ for all i. Thus $\hd(a, M) = \hd(aR, M)$. Since $\hd(aR, M) \leq \cd(aR, \hat{R})$ (see \cite[Corollary 3.2]{6}) and $\cd(aR, \hat{R}) = \cd(a, \hat{R})$ (see \cite[Lemma 2.1]{5}), we conclude that $\hd(a, M) \leq \cd(a, \hat{R})$.

Lemma 2.4. Let (R, m) be a complete local ring, a be an ideal of R and M be a non-zero Artinian module of dimension n with $\hd(a, M) = n$. Then the set

$$
\Sigma := \{N' : N' \text{ is a submodule of } M \text{ and } \hd(a, M/N') < n\}
$$

has a smallest element N. The module N has the following properties:

i) $\hd(a, N) = \dim N = n$.

ii) N has no proper submodule L such that $\hd(a, N/L) < n$.

iii) $\Att(N) = \{p \in \Att(M) : \cd(a, R/p) = n\}$.

iv) $\mathcal{H}^i_a(N) \simeq \mathcal{H}^i_a(M)$.

Proof. It is clear that $M \in \Sigma$ and thus Σ is not empty. Since M is an Artinian R-module, the set Σ has a minimal member N. By Lemma 2.1, if $N_1, N_2 \in \Sigma$, then $\hd(a, M/N_1 \cap N_2) < n$. Since the intersection of any two members of Σ is again in Σ, it follows that N is contained in every member of Σ implying that N is the smallest element of Σ.

i) Since $\hd(a, M/N) < n$, from the exact sequence $0 \rightarrow N \rightarrow M \rightarrow M/N \rightarrow 0$ and Lemma 2.1 we obtain $\hd(a, N) = n$. From $n = \hd(a, N) \leq \dim N \leq \dim M = n$ we derive $\dim N = n$.

ii) Suppose that L is a submodule of N such that $\hd(a, N/L) < n$. From the exact sequence

$$
0 \rightarrow N/L \rightarrow M/L \rightarrow M/N \rightarrow 0
$$

we deduce that $\hd(a, L) \leq \hd(a, M)$. Hence $\Max\{\hd(a, L), \hd(a, N)\} \leq \hd(a, M)$. From the above long exact sequence we also infer that $\hd(a, M) \leq \Max\{\hd(a, L), \hd(a, N)\}$ and the proof is complete.
and Lemma 2.1 we infer \(\text{hd}(a, M/L) < n \). Hence \(L \in \Sigma \) and \(L = N \).

iii) If \(p \in \text{Att}(N) \), then \(p = \text{Ann}(N/L) \), where \(L \) is a submodule of \(N \). By (ii), \(\text{hd}(a, N/L) = n \). Hence \(n = \text{hd}(a, N/L) \leq \dim R/p \leq \dim(M) = n \). Thus \(\dim(R/p) = \dim(M) \). Since \(\dim(M) = \dim(R/\text{Ann}(M)) \), we conclude that \(p \) is a minimal element of the set \(\mathcal{V}(\text{Ann}(M)) \). Thus \(p \in \text{Att}(M) \).

On the other hand, using Lemma 2.3, we derive \(n = \text{hd}(a, N/L) \leq \text{cd}(a, R/p) \leq \dim(R/p) \leq \dim(M) = n \). Therefore \(\text{cd}(a, R/p) = n \).

Now suppose that \(p \in \text{Att}(M) \) and \(\text{cd}(a, R/p) = n \). Since \(\text{hd}(a, M/N) < n \) and \(\text{cd}(a, R/p) = n \), Lemma 2.2 implies that \(p \notin \text{Att}(M/N) \). Therefore \(p \in \text{Att}(N) \).

iv) The exact sequence \(0 \to N \to M \to M/N \to 0 \) induces the exact sequence

\[
H^{n+1}_{a}(M/N) \to H_{a}^{n}(N) \to H_{a}^{n}(M) \to H_{a}^{n}(M/N) \to .
\]

Since \(\text{hd}(a, M/N) < n \), \(H^{n+1}_{a}(M/N) = H_{a}^{n}(M/N) = 0 \). Therefore \(H_{a}^{n}(N) \cong H_{a}^{n}(M) \).

Theorem 2.5. Let \((R, m) \) be a complete local ring, \(a \) be an ideal of \(R \) and \(M \) be a non-zero Artinian module of dimension \(n \). Then

\[
\text{Ass}(H_{a}^{n}(M)) = \{ p \in \text{Att}(M) : \text{cd}(a, R/p) = n \}.
\]

Proof. If \(n = 0 \), then \(M \) has a finite length and therefore \(a^{k}M = 0 \) for some \(k \in \mathbb{N} \). Hence

\[
\text{Ass}(H_{a}^{n}(M)) = \{ m \} = \text{Att}(M) = \{ p \in \text{Att}(M) : \text{cd}(a, R/p) = 0 \}.
\]

Thus we can assume that \(n > 0 \). If \(H_{a}^{n}(M) = 0 \), then \(\text{hd}(a, M) < n \). Hence by Lemma 2.2 \(\text{cd}(a, R/p) < n \) for all \(p \in \text{Att}(M) \). This implies \(\{ p \in \text{Att}(M) : \text{cd}(a, R/p) = n \} = \emptyset = \text{Ass}(H_{a}^{n}(M)) \) and the result has been proved in this case.

Now assume that \(n > 0 \) and \(H_{a}^{n}(M) \neq 0 \). Then \(\text{hd}(a, M) = \dim(M) = n \). By Lemma 2.4, we can assume that \(M \) has no proper submodule \(L \) with \(\text{hd}(a, M/L) < n \) and we must show that \(\text{Ass}(H_{a}^{n}(M)) = \text{Att}(M) \).

If \(r \notin \cup_{p \in \text{Att}(M)} p \), then the exact sequence \(0 \to (0 : M) r \to M \to M/r \to 0 \) induces the exact sequence \(H^{n}_{a}(0 : M) r \to H^{n}_{a}(M) \to H^{n}_{a}(M/r) \). Using [3, Lemma 4.7], we obtain \(\text{Ndim}_{R}(0 : M/r) \leq n - 1 \), and therefore \(H^{n}_{a}(0 : M/r) = 0 \). Since \(0 \to H^{n}_{a}(M) \to H^{n}_{a}(M/r) \) is exact, we infer \(r \notin \cup_{p \in \text{Ass}(H^{n}_{a}(M))} p \). Since \(\text{Att}(M) \) is a finite set, every \(p \in \text{Ass}(H^{n}_{a}(M)) \) is included in some \(q \in \text{Att}(M) \). For such \(q \) there exists a submodule \(L \) of \(M \) satisfying \(q = \text{Ann}(M/L) \). Hence \(n = \text{hd}(a, M/L) \leq \dim(M/L) \leq \dim R/q \leq \dim R/p \leq n \). This shows \(q = p \) and \(\text{Ass}(H^{n}_{a}(M)) \subseteq \text{Att}(M) \).

To prove the reverse inclusion, assume \(p \in \text{Att}(M) \). There exists a submodule \(L \) of \(M \) such that \(\text{Att}(L) = \{ p \} \). Since we have assumed that \(M \) has no proper submodule \(U \) with \(\text{hd}(a, M/U) < n \), Lemma 2.4 implies that \(\text{cd}(a, R/p) = n \). Hence by Lemma 2.2, we have \(\text{hd}(a, L) = n \) and \(H^{n}_{a}(L) \neq 0 \). Since \(\text{cd}(a, R/p) = n \) and \(\text{Att}(L/U) \subseteq \text{Att}(L) = \{ p \} \) for all submodules \(U \), Lemma 2.2 shows that \(L \) cannot have any proper submodule \(U \) such that \(\text{hd}(a, L/U) < n \). Analogously as above, we obtain \(\text{Ass}(H^{n}_{a}(L)) \subseteq \text{Att}(L) = \{ p \} \). Since \(H^{n}_{a}(L) \neq 0 \), we establish that \(\text{Ass}(H^{n}_{a}(L)) = \{ p \} \). However, from the exact sequence \(0 \to H^{n}_{a}(L) \to H^{n}_{a}(M) \to . \)
that completes the proof. □

Corollary 2.6. Let (R, m) be a complete local ring, a be an ideal of R and M be a non-zero Artinian module of dimension n. Then

\[\text{Ass}(H^n(M)) = \{ p \in \text{Att}(M) : \dim(R/p) = n \} \]

Proof. Since $\text{cd}(m, R/p) = \dim R/p$, it follows from Theorem 2.5. □

The following Theorem is the main result of this paper.

Theorem 2.7. Let (R, m) be a local ring, a be an ideal of R and M be a non-zero Artinian R-module with $\text{Ndim}_RM = n$. Then

\[\text{Ass}_R(H^n(M)) = \{ \mathfrak{P} \cap R : \mathfrak{P} \in \text{Att}_R M \text{ and } \text{cd}(aR, \tilde{R}/\mathfrak{P}) = n \} \]

Proof. Since $\dim_{\tilde{R}}D(M) = \dim_{\tilde{R}}M = \text{Ndim}_RM = n$ (for details consult [4]), by [1, Theorem 7.1.6], $H^n_{aR}(D(M))$ is an Artinian local cohomology module and $D(H^n_{aR}(D(M))) \simeq H^n_{aR}(M)$ is a Noetherian \tilde{R}-module. It is well known that $\text{Ass}_R(L) = \{ \mathfrak{P} \cap R : \mathfrak{P} \in \text{Ass}_{\tilde{R}} L \}$ for each finitely generated \tilde{R}-module L (See [9, Exercise 6.7]). Thus $\text{Ass}_R(H^n_{aR}(M)) = \{ \mathfrak{P} \cap R : \mathfrak{P} \in \text{Ass}_{\tilde{R}}(H^n_{aR}(M)) \}$. Since by [13, Proposition 4.3], $H^n_{aR}(M) \simeq H^n_{aR}(M)$ as R-modules, we conclude that $\text{Ass}_R(H^n_{aR}(M)) = \{ \mathfrak{P} \cap R : \mathfrak{P} \in \text{Ass}_{\tilde{R}}(H^n_{aR}(M)) \}$. According to Theorem 2.5, $\text{Ass}_R(H^n_{aR}(M)) = \{ \mathfrak{P} \cap R : \mathfrak{P} \in \text{Att}_R M \text{ and } \text{cd}(aR, \tilde{R}/\mathfrak{P}) = n \}$. Therefore $\text{Ass}_R(H^n_{aR}(M)) = \{ \mathfrak{P} \cap R : \mathfrak{P} \in \text{Att}_R M \text{ and } \text{cd}(aR, \tilde{R}/\mathfrak{P}) = n \}$. □

Acknowledgment. I would like to thank the referee for the invaluable comments on the manuscript.

References

Sh. Rezaei, Department of Mathematics, Faculty of Science, Payame Noor University (PNU), Khomein, Iran, e-mail: Sha.rezaei@gmail.com