Abstract. Let R be a ring. A right ideal I of R is called small in R if $I + K \neq R$ for every proper right ideal K of R. A ring R is called right small finitely injective (briefly, SF-injective) (resp., right small principally injective (briefly, SP-injective)) if every homomorphism from a small and finitely generated right ideal (resp., a small and principally right ideal) to R_R can be extended to an endomorphism of R. The class of right SF-injective and SP-injective rings are broader than that of right small injective rings (in [15]). Properties of right SF-injective rings and SP-injective rings are studied and we give some characterizations of a QF-ring via right SF-injectivity with ACC on right annihilators. Furthermore, we answer a question of Chen and Ding.

1. Introduction

Throughout the paper R represents an associative ring with identity $1 \neq 0$ and all modules are unitary R-module. We write M_R (resp. R_M) to indicate that M is a right (resp. left) R-module. We use J (resp. Z_r, S_r) for the Jacobson radical (resp. the right singular ideal, the right socle of R) and $E(M_R)$ for the injective hull of M_R. If X is a subset of R, the right (resp. left) annihilator of X in R is denoted by $r_R(X)$ (resp. $l_R(X)$) or simply $r(X)$ (resp. $l(X)$) if no confusion appears. If N is a submodule of M (resp. proper submodule) we denote by $N \leq M$ (resp. $N < M$). Moreover, we write $N \leq^* M$, $N \ll M$, $N \leq^\oplus M$ and $N \leq^{\text{max}} M$ to indicate that N is an essential submodule, a small submodule, a direct summand and a maximal submodule of M, respectively. A module M is called uniform if $M \neq 0$ and every non-zero submodule of M is essential in M. M is finite dimensional (or has finite rank) if $E(M)$ is a finite direct sum of indecomposable submodules; or equivalently, if M has an essential submodule which is a finite direct sum of uniform submodules.

A module M_R is called F-injective (resp., P-injective) if every right homomorphism from a finitely generated (resp., principal) right ideal to M_R can be extended to an R-homomorphism from R_R to M_R. A ring R is called right F-injective (resp.,
right P-injective) if R_R is F-injective (resp., P-injective). R is called right min-injective if every right R-homomorphism from a minimal right ideal to R can be extended to an endomorphism of R_R. A ring R is said to be a right PF-ring if the right R_R is an injective cogenerator in the category of right R-modules. A ring R is called QF-ring if it is right (or left) Artinian and right (or left) self-injective.

In [15], a module M_R is called small injective if every homomorphism from a small right ideal to M_R can be extended to an R-homomorphism from R_R to M_R. A ring R is called right small injective if R_R is small injective. Under small injective condition, Shen and Chen ([15]) gave some new characterizations of QF rings and right PF rings. In [18], authors showed some characterizations of Jacobson radical J via small injectivity. They proved that J is Noetherian as a right R-module if and only if every direct sum of small injective right R-modules is small injective if and only if $E^{(n)}$ is small injective for every small injective module E_R.

In 1966, Faith proved that R is QF if and only if R is right self-injective and satisfies ACC on right annihilators. Then around 1970, Björk proved that R is QF if and only if R is right F-injective and satisfies ACC on right annihilators. In this paper, we show that R is QF if and only if R is a semiregular and right SF-injective ring with ACC on right annihilators if and only if R is a semilocal and right SF-injective ring with ACC on right annihilators if and only if R is a right SF-injective ring with ACC on right annihilators in which $S_r \leq R_R$. We also give some characterizations of rings whose R-homomorphism from a small, finitely generated right ideal to R with a simple image, can be extended to an endomorphism of R_R. Furthermore, we prove that if R is a right perfect, right simple-injective and left pseudo-coherent ring, then R is QF. Some known results are obtained as corollaries.

A general background material can be found in [1], [7], [19].

2. ON SP(SF)-INJECTIVE RINGS

Definition 2.1. A module M_R is called small principally injective (briefly, SP-injective) if every homomorphism from a small and principal right ideal to M_R can be extended to an R-homomorphism from R_R to M_R. A module M_R is called small finitely injective (briefly, SF-injective) if every homomorphism from a small and finitely generated right ideal to M_R can be extended to an R-homomorphism from R_R to M_R. A ring R is called right SP-injective (resp., right SF-injective) if R_R is SP-injective (resp., SF-injective).

The following implications are obvious:

\[\text{small injective} \quad \iff \quad \text{injection} \quad \iff \quad \text{SF - injective} \quad \implies \quad \text{SP - injective} \]

\[\text{injection} \quad \iff \quad \text{F - injective} \]
Lemma 2.2. The following conditions are equivalent for a ring R:

1. R is right SP-injective.
2. $lr(a) = Ra$ for all $a \in J$.
3. $r(a) \leq r(b)$, where $a \in J$, $b \in R$, implies $Rb \leq Ra$.
4. $l(bR \cap r(a)) = l(b) + Ra$ for all $a \in J$ and $b \in R$.
5. If $\gamma : aR \to R$, $a \in J$, is an R-homomorphism, then $\gamma(a) \in Ra$.

Proof. A similar proving to [10, Lemma 5.1].

We also have:

Lemma 2.3. A ring R is right SF-injective if and only if it satisfies the following two conditions:

1. $l(T \cap T') = l(T) + l(T')$ for all small, finitely generated right ideals T and T'.
2. R is right SP-injective.

Proof. (\Rightarrow): Assume that R is right SF-injective. If T and T' are small, finitely generated right ideals, then $T + T'$ is a small finitely generated right ideal. Let $b \in l(T \cap T')$ and then we define $\alpha : T + T' \to R$ via $\alpha(t + t') = bt$, for all $t \in T$ and $t' \in T'$, so $\alpha = a_\ast$, for some $a \in R$ by hypothesis. Then $b - a \in l(T)$ and $a \in l(T')$. Hence $b \in l(T) + l(T')$. Thus (1) holds. (2) is clear.

(\Leftarrow): We can prove it by induction on the number of generators of T and T'. □

Corollary 2.4. Let R be a right SP-injective ring such that $l(T \cap T') = l(T) + l(T')$ for all right ideals T and T' of R where T is small, finitely generated. Then every R-homomorphism $\varphi : I \to R$ extends to $R \to R$ where I is a small right ideal and the image $\varphi(I)$ is finitely generated.

Proposition 2.5. A direct product $R = \prod_{i \in I} R_i$ of rings R_i is right SF-injective (resp., right SP-injective) if and only if R_i is right SF-injective (resp., right SP-injective) for each $i \in I$.

Proof. Assume that $R = \prod_{i \in I} R_i$ is right SF-injective. For each $i \in I$, we take any $a_i \in J(R_i)$ and $b_i \in R_i$ such that $r_{R_i}(a_i) \leq r_{R_i}(b_i)$. Let $a = (a_i)_{i \in I}$, $b = (b_i)_{i \in I}$, where $a_j = 0, b_j = 0$, $\forall j \neq i$ and $a_j = a_i, b_j = b_i$ if $j = i$. Then $a \in J(R), b \in R$ and $r_R(a) \leq r_R(b)$. So $b \in Ra$ since R is right SF-injective. Therefore $b_i \in R_i a_i$. Thus R_i is right SP-injective. On the other hand, for all small, finitely generated right ideals T_i and T'_i of R_i, $\iota_i(T_i), \iota_i(T'_i)$ are small, finitely generated right ideals of R, where $\iota_i : R_i \hookrightarrow R$ is the inclusion for each $i \in I$. By hypothesis, $l_R(\iota_i(T_i) \cap \iota_i(T'_i)) = l_R(\iota_i(T_i)) + l_R(\iota_i(T'_i))$. This implies that $l_R(T_i \cap T'_i) = l_{R_i}(T_i) + l_{R_i}(T'_i)$. Thus R_i is right SF-injective by Lemma 2.3.

Conversely, $R = \prod_{i \in I} R_i$, where R_i is right SF-injective. For each $a = (a_i)_{i \in I} \in J(R)$ and $b = (b_i)_{i \in I} \in R$ such that $r_R(a) \leq r_R(b)$, then for each $i \in I$, $a_i \in J(R_i)$ and $r_{R_i}(a_i) \leq r_{R_i}(b_i)$. Since R_i is right SF-injective, $b_i \in R_i a_i$. Hence $b \in Ra$. If T and T' are small, finitely generated right ideals of R, then we can prove that $l_R(T \cap T') = l_R(T) + l_R(T')$. Thus R is right SF-injective. □
A ring R is called left minannihilator if $lr(K) = K$ for every minimal left ideal K of R.

Proposition 2.6. Let R be a right SP-injective ring. Then:

1. R is right mininjective and left minannihilator.
2. $J \leq Z_r$.

Proof. (1) Since every minimal one-sided ideal of R is either nilpotent or a one-sided direct summand of R, each right SP-injective ring is right mininjective and left minannihilator.

(2) If $a \in J$ we will show that $r(a) \leq^e R_R$. In fact, let $b \in R$ such that $bR \cap r(a) = 0$. By Lemma 2.2, $R = l(b) + Ra$, so $l(b) = R$ because $a \in J$. Hence $b = 0$. This proves that $a \in Z_r$.

A ring R is called right Kasch if every simple right R-module embeds in R_R.

Proposition 2.7. Let R be a right Kasch ring. Then:

1. If R is right SP-injective, then:
 a) The map $\psi : T \mapsto l(T)$ from the set of maximal right ideals T of R to the set of minimal left ideals of R is a bijection. And the inverse map is given by $K \mapsto r(K)$, where K is a minimal left ideal of R.
 b) For $k \in R$, R_k is minimal iff kR is minimal, in particular $S_e = S_1$.
2. If R is right SF-injective, then $rl(I) = I$ for every small, finitely generated right ideal I of R. In particular, R is left SP-injective.

Proof. (1) a): By Proposition 2.6 (1) and [10, Theorem 2.32]. For b), if Rk is minimal, then $r(k)$ is maximal by a). This means kR is minimal. Conversely, by [10, Theorem 2.21].

(2): Firstly, we have $J = rl(J)$ because R is right Kasch. Let T be a right small, finitely generated ideal of R. Therefore, $T \leq rl(T) \leq rl(J) = J$. If $b \in rl(T) \backslash T$, take I such that $T \leq I \leq^{\text{max}} (bR + T)$. Since R is right Kasch, we can find a monomorphism $\sigma : (bR + T)/I \rightarrow R$, and then define $\gamma : bR + T \rightarrow R$ via $\gamma(x) = \sigma(x + I)$. Since $bR + I$ is a small, right finitely generated ideal of R and R is right SF-injective, it follows that $\gamma = c$, where $c \in R$. Hence $cb = \sigma(b + I) \neq 0$ because $b \notin I$. But if $t \in T$, then $ct = \sigma(t + I) = 0$ because $T \leq I$, so $c \in l(I)$. Since $b \in rl(T)$ this gives $cb = 0$, a contradiction. Thus $T = rl(T)$. It is clear that R is left SP-injective.

Recall that a ring R is called semiregular if R/J is von Neumann regular and idempotents can be lifted modulo J. Note that if R is semiregular, then for every finitely generated right ideal I of R, $R_H = H \oplus K$, where $H \leq I$ and $I \cap K \ll R$.

Motivated by [15, Lemma 3.1] we have the following result.

Lemma 2.8. If R is a semiregular ring and I is a right ideal of R, then the following conditions are equivalent:

1. Every homomorphism from a finitely generated right ideal to I can be extended to an endomorphism of R_H.
(2) Every homomorphism from a small, finitely generated right ideal to I can be extended to an endomorphism of R_R.

Proof. (1) \Rightarrow (2) is obvious.

(2) \Rightarrow (1): Let $f : K \to I$ be an R-homomorphism, where K is a finitely generated right ideal. Since R is semiregular, then $R = H \oplus L$, where $H \leq K$ and $K \cap L \ll R$. Hence $R = K + L$ and $K = H \oplus (K \cap L)$, $K \cap L$ is a small, finitely generated right ideal of R. Thus there exists an endomorphism g of R_R such that $g(x) = f(x)$ for all $x \in K \cap L$. We construct a homomorphism $\varphi : R_R \to R_R$ defined by $\varphi(r) = f(k) + g(l)$ for any $r = k + l$, $k \in K$, $l \in L$. Now we show that φ is well defined. Indeed, if $k_1 + l_1 = k_2 + l_2$, where $k_i \in K$, $l_i \in L$, $i = 1, 2$, then $k_1 - k_2 = l_1 - l_2 \in K \cap L$. Hence $f(k_1 - k_2) = g(l_1 - l_2)$, which implies that $\varphi(k_1 + l_1) = \varphi(k_2 + l_2)$. Thus φ is an endomorphism of R_R such that $\varphi|_K = f$. □

Let I be an ideal of R. A ring R is called right I-semiregular if for every $a \in I$, $aR = eR \oplus T$, where $e^2 = e$ and $T \leq I_R$.

Corollary 2.9. Let R be a right Z_r-semiregular ring. Then R is right SF-injective if and only if R is right F-injective.

It is well-known if R is semiperfect and right small injective with $S_r \leq^e R_R$, then R is right self-injective. This result is proved by Yousif and Zhou (see [20, Theorem 2.11]). In [15, Theorem 3.4], they showed that a semilocal (or semiregular) ring R is right self-injective if and only if R is right small injective. From Lemma 2.8 we also have a similar result.

Theorem 2.10. Let R be a semiregular ring. Then

(1) R is right P-injective if and only if R is right SP-injective.

(2) R is right F-injective if and only if R is right SF-injective.

Because a semiperfect ring is semiregular, we have:

Corollary 2.11. Let R be a semiperfect ring. Then

(1) R is right P-injective if and only if R is right SP-injective.

(2) R is right F-injective if and only if R is right SF-injective.

Next we obtain some characterizations of QF-ring via right SF-injectivity with ACC on right annihilators. The following theorem extends [15, Theorem 3.8].

Theorem 2.12. For a ring R, the following conditions are equivalent:

(1) R is QF.

(2) R is a semiregular and right SF-injective ring with ACC on right annihilators.

(3) R is a semilocal and right SF-injective ring with ACC on right annihilators.

(4) R is a right SF-injective ring with ACC on right annihilators in which $S_r \leq^e R_R$.

Proof. It is obvious that (1) ⇒ (2), (3), (4).
(2) ⇒ (1): By Theorem 2.10, R is right F-injective. Thus R is QF by [3, Theorem 4.1].
(3) ⇒ (1): Since R satisfies ACC on right annihilators, Z_r is nilpotent and so Z_r ⊆ J. Therefore, J = Z_r is nilpotent by Proposition 2.6. Hence R is semiprimary.
(4) ⇒ (1): By [13, Theorem 2.1] or [14, Lemma 2.11], R is semiprimary. □

Corollary 2.13. Let R be a ring. Then R is QF if and only if R is a semilocal, left and right SP-injective ring with ACC on right annihilators.

Remark. The condition “semilocal” in Theorem 2.12 can not be omitted, since the ring of integers Z is SP-injective, Noetherian, but Z is not QF.

The following result extends [11, Theorem 2.2].

Proposition 2.14. If R is right SP-injective and R/Soc(RR) has ACC on right annihilators, then J is nilpotent.

Proof. Here we use a similar argument to that one in [2, Theorem 3]. Suppose that R/Soc(RR) has ACC on right annihilators. Let S = Soc(RR) and S = R/S. For any a_1, a_2, . . ., in J, since
\[r_R(\bar{a}_1) \leq r_R(\bar{a}_2 \bar{a}_1) \leq \ldots, \]
by hypothesis there exists a positive integer m such that
\[r_R(\bar{a}_m \ldots \bar{a}_2 \bar{a}_1) = r_R(\bar{a}_{m+k} \ldots \bar{a}_2 \bar{a}_1) \]
for k = 0, 1, 2, Now for any positive integer n, since a_{n+1}a_n . . . a_1 ∈ J ≤ Z_r, r(a_{n+1}a_n . . . a_1) ≤ S R. Hence S ≤ r(a_{n+1}a_n . . . a_1). We claim that
\[r_R(\bar{a}_n \ldots \bar{a}_2 \bar{a}_1) \leq r(a_{n+1}a_n \ldots a_1)/S \leq r_R(\bar{a}_{n+1} \ldots \bar{a}_2 \bar{a}_1). \]
In fact, assume b + S ∈ r_R(\bar{a}_n \ldots \bar{a}_2 \bar{a}_1). Then we have a_n . . . a_1 b ∈ S. But since S ≤ r(a_{n+1}), we get a_{n+1}a_n . . . a_1 b = 0. Thus b ∈ r(a_{n+1}a_n . . . a_1), and so b + S ∈ r(a_{n+1}a_n . . . a_1)/S. Now the other inclusion r(a_n . . . a_1)/S ≤ r_R(\bar{a}_{n+1} \ldots \bar{a}_2 \bar{a}_1) is obvious.

By this fact, it follows that
\[r(a_{m+1}a_m \ldots a_1)/S = r(a_{m+2}a_{m+1} \ldots a_1)/S \]
because r_R(\bar{a}_m \ldots \bar{a}_2 \bar{a}_1) = r_R(\bar{a}_{m+2} \ldots \bar{a}_2 \bar{a}_1). Therefore
\[r(a_{m+1}a_m \ldots a_1) = r(a_{m+2}a_{m+1}a_m \ldots a_1), \]
and hence (a_{m+1}a_m . . . a_1) R ∩ r(a_{m+2}) = 0. But r(a_{m+2}) is an essential right ideal of R, and so a_{m+1}a_m . . . a_1 = 0. Hence J is right T-nilpotent and the ideal (J + S)/S of the ring R = R/S is also right T-nilpotent. By [1, Proposition 29.1], (J + S)/S is nilpotent, and so there is a positive integer t such that J^t ≤ S. Hence J^{t+1} ≤ SJ. Thus J is nilpotent. □

Theorem 2.15. If R is a semilocal and right SF-injective ring such that R/S_r is right Goldie, then R is QF.
Proof. By Proposition 2.14, \(J \) is nilpotent, and hence \(R \) is semiprimary. Hence \(R \) is right \(F \)-injective by Theorem 2.10. This implies that \(R \) is right GPF (i.e., \(R \) is semiperfect, right \(P \)-injective with \(S_r \leq R_R \)) and so \(R \) is right Kasch by [11, Corollary 2.3]. Therefore \(R \) is left \(P \)-injective by [3, Proposition 4.1]. Thus \(R \) is QF by [10, Theorem 3.38]. \(\Box \)

Corollary 2.16. If \(R \) is a semilocal and right SF-injective ring satisfying ACC on essential right ideals, then \(R \) is QF.

Now we consider rings whose small and finitely generated right ideals are projective. We have the following result.

Theorem 2.17. For a ring \(R \) the following conditions are equivalent:

1. Every small and finitely generated right ideal of \(R \) is projective.
2. Every quotient module of a SF-injective module is SF-injective.
3. Every quotient module of a \(F \)-injective module is SF-injective.
4. Every quotient module of a small injective module is SF-injective.
5. Every quotient module of an injective module is SF-injective.

Proof. (2) \(\Rightarrow \) (3) \(\Rightarrow \) (5) and (2) \(\Rightarrow \) (4) \(\Rightarrow \) (5) are obvious.

(1) \(\Rightarrow \) (2): Assume that \(E_R \) is SF-injective and \(\pi : E \to B \) is an epimorphism. Let \(f : I \to B \) be an \(R \)-homomorphism, where \(I \) is a small and finitely generated right ideal of \(R \).

\[
\begin{array}{c}
0 \\
E \\
\end{array} \xleftarrow{\iota} \begin{array}{c} I \\
\downarrow f \end{array} \xrightarrow{\iota} \begin{array}{c} R \\
\downarrow \pi \\
B \\
\end{array} \xrightarrow{\psi} 0
\]

where \(\iota \) is the inclusion.

By (1), \(I \) is projective. Therefore there exists an \(R \)-homomorphism \(h : I \to E \) such that \(\pi h = f \). Now since \(E \) is SF-injective, there is an \(R \)-homomorphism \(h' : R \to E \) such that \(h' \iota = h \). Let \(h'' = \pi h' : R \to B \), then \(h'' \iota = f \). This means \(B_R \) is SF-injective.

(5) \(\Rightarrow \) (1): For every small and finitely generated right ideal \(I \) of \(R \), we consider the epimorphism \(h : A \to B \) and \(R \)-homomorphism \(\alpha : I \to B \).

Since \(B = h(A) \cong A/\text{Ker } h \xleftarrow{\iota_1} E(A)/\text{Ker } h \), where \(\iota_1 \) is the inclusion and \(\psi(h(a)) = a + \text{Ker } h \), for all \(a \in A \). Then let \(j = \iota_1 \psi \). We consider the following diagram:

\[
\begin{array}{ccc}
I & \xrightarrow{\iota} & R \\
\downarrow \varphi & \downarrow \alpha & \\
E & \xrightarrow{h} & B \\
\downarrow j & & \downarrow p \\
E(A) & \xrightarrow{\psi} & E(A)/\text{Ker } h \xrightarrow{0}
\end{array}
\]

where \(\iota \) is the inclusion and \(p \) is the natural epimorphism.
By (5), $E(A)/\ker h$ is SF-injective and then there exists an R-homomorphism $\alpha' : R \to E(A)/\ker h$ such that $\alpha' \circ j = h$. Since R_R is projective, there is an R-homomorphism $\alpha'' : R \to E(A)$ such that $p\alpha'' = \alpha'$. Let $h' = \alpha'' \circ j : I \to E(A)$.

It is easy to see that $h'(I) \subseteq A$, so there exists an R-homomorphism $\varphi : I \to A$ such that $\varphi(x) = h'(x)$, for all $x \in I$.

Now we claim that $h\varphi = \alpha$. In fact, for each $x \in I$ we have

$$j(\alpha(x)) = \alpha'(j(x)) = p(\alpha''(x)) = p(h'(x)) = p(\varphi(x)).$$

Since α is the epimorphism, $\alpha(x) = h(a)$ for some $a \in A$. Therefore $j(\alpha(x)) = j(h(a)) = a + \ker h$, and so $a + \ker h = \varphi(x) + \ker h$, $h(a - \varphi(x)) = 0$. Hence $h\varphi(x) = h(a) = \alpha(x)$. Thus I is projective.

\begin{proof}
Example 2.18. i) Let $R = F[x_1, x_2, \ldots]$, where F is a field and x_i are commuting indeterminants satisfying the relations: $x_i^n = 0$ for all i, $x_ix_j = 0$ for all $i \neq j$, and $x_i^2 = x_j^2$ for all i and j. Then R is a commutative, semiprimary F-injective ring. But R is not a self-injective ring (see [10, Example 5.45]). Thus R is SF-injective, but R is not a small injective ring. Because if R is small injective, then R is self-injective by [15, Theorem 3.4], a contradiction.

ii) Let F be a field and assume that $a \mapsto a$ is an isomorphism $F \to \overline{F} \subseteq F$, where the subfield $\overline{F} \neq F$. Let R denote the left vector space on basis $\{1, t\}$, and make R into an F-algebra by defining $t^2 = 0$ and $ta = at$ for all $a \in F$ (see [10, Example 2.5]). Then R is a right SP-injective (since R is right P-injective) and semiprimary ring but not a right SF-injective ring. If R is a right SF-injective ring, then R is right F-injective by Theorem 2.10. This is a contradiction by [10, Example 5.22]. Moreover, R is not left SP-injective since R is not left mininjective.

iii) The ring of integers \mathbb{Z} is a commutative ring with $J = 0$. So R is small injective, but R is not P-injective.

3. On simple-FJ-injective rings

Definition 3.1. A ring R is called right simple-FJ-injective if every right R-homomorphism from a small, finitely generated right ideal to R with a simple image, can be extended to an endomorphism of R_R.

We have the implications simple-injective \Rightarrow simple-J-injective \Rightarrow simple-FJ-injective. But the converses in general are not true. By Example 2.18(i), R is commutative, semiprimary and simple-FJ-injective. But R is not simple-J-injective. In fact, if R is simple-J-injective then R is simple-injective by [15, Corollary 3.6]. Hence R is self-injective by [10, Theorem 6.47]. This is a contradiction.

Lemma 3.2. If R is right simple-FJ-injective, then R is right mininjective and a left min annihilator.

Proof. We can prove it as in Proposition 2.6. \qed
Lemma 3.3. A ring R is right simple-FJ-injective a ring if and only if every R-homomorphism $f : I \to R$ extends to $R_R \to R$, where I is a small, finitely generated right ideal and $f(I)$ is finitely generated, semisimple.

Proof. Write $f(I) = \bigoplus_{i=1}^{n} S_i$, where S_i is a simple right ideal. Let $\pi_i : \bigoplus_{i=1}^{n} S_i \to S_i$ be the projection for each i. Since R is right simple-FJ-injective, $\pi_i f = c_i$, for some $c_i \in R$ and for each i. Thus $f = c$, with $c = c_1 + \ldots + c_n$. \hfill \square

Proposition 3.4. Let R be a right simple-FJ-injective and right Kasch ring. Then

(1) $\text{rl}(I) = I$ for every small, finitely generated right ideal I of R.

(2) $S_r = S_l$.

Proof. By Proposition 2.7. \hfill \square

In [20], a ring R is called right $(I - K) - m$-injective if for any m-generated right ideal $U \leq I$ and any R-homomorphism $f : U_R \to K_R$, $f = c_r$, for some $c_r \in R$, where I, K are two right ideals of R and $m \geq 1$.

Lemma 3.5 ([20], Lemma 2.5). If R is a right $(J, S_r) - 1$-injective, right Kasch and semiregular ring, then $\text{Im}(I)$ is an essential left ideal of R_R.

Lemma 3.6. Let R be a right simple-FJ-injective and semiregular ring. Then every R-homomorphism $f : K \to R$ extends to $R_R \to R_R$ where K is a finitely generated right ideal and $f(K)$ is simple.

Proof. Let $f : K \to I$ be an R-homomorphism, where K is a finitely generated right ideal and $f(K)$ is simple. Since R is semiregular, then $K = eR \oplus L$, where $e^2 = e \in R$ and $L \leq J$. So L is a small, finitely generated right ideal of R. It is easy to see that $K = eR \oplus (1 - e)L$. Therefore $(1 - e)L$ is a small, finitely generated right ideal of R. By hypothesis, there exists an endomorphism g of R_R such that $g(x) = f(x)$ for all $x \in (1 - e)L$. We construct a homomorphism $\varphi : R_R \to R_R$ defined by $\varphi(x) = f(eRx) + g((1 - e)x)$ for any $x \in R$. Then $\varphi|K = f$. \hfill \square

Proposition 3.7. Let R be a right simple-FJ-injective ring. Then

(1) If R is semiregular and e is a local idempotent of R, then $\text{Soc}(eR)$ is either 0 or simple and essential in eR_R.

(2) If R is semiperfect, then the following conditions are equivalent

a) $\text{Soc}(eR) \neq 0$ for each local idempotent e.

b) S_r is finitely generated and essential in R_R.

Proof. (1) Suppose that $\text{Soc}(eR) \neq 0$ and let aR be a simple right ideal of eR. If $0 \neq b \in eR$ such that $aR \cap bR = 0$, then we construct an R-homomorphism $\gamma : aR \oplus bR \to eR$ by $\gamma(ax + by) = ax$, for all $x, y \in R$. Therefore $\text{Im}(\gamma) = aR$ is simple. By Lemma 3.6, $\gamma = e$. for some $e \in R$. Let $e' = ece \in eRe$. So $(e - e')a = ea - eca = 0$. On the other hand, $\text{End}(eR_R) \cong eRe$ is local. It implies that e' is invertible in eRe, but $e'b = eceb = ec \neq 0$ and so $b = 0$, which is a contradiction. Hence $aR \cap bR \neq 0$, $aR \leq bR$ since aR is simple. Thus $\text{Soc}(eR)$ is simple and essential in eR_R.
(2) If \(1 = e_1 + \ldots + e_n\), where the \(e_i\) are orthogonal local idempotents, then \(S_r = \bigoplus_{i=1}^n \text{Soc}(e_i R)\) and \(a \Rightarrow b\) follows from (1). The converse is clear. □

Proposition 3.8. Let \(R\) be a semiperfect, right simple-FJ-injective ring with \(\text{Soc}(e R) \neq 0\) for each local idempotent \(e \in R\). Then:

1. \(\text{rl}(I) = I\) for every finitely generated right ideal \(I\) of \(R\), so \(R\) is left \(P\)-injective.
2. \(R\) is left and right Kasch.
3. \(S_r = S_l = S_r = S_l = r(J) = l(J)\) is essential in \(R\) and in \(R_R\).
4. \(J = Z_r = Z_l = r(S) = l(S)\), with \(S_r = S_l = S\).
5. \(R\) is left and right finitely cogenerated.

Proof. (2): by [12, Theorem 3.7] and (1) by Proposition 3.4 and [20, Lemma 1.4].

(3): \(S_r = S_l = S\) is essential in \(R_R\) and in \(R_R\) by Proposition 3.4, Lemma 3.5 and Proposition 3.7. \(S = r(J) = l(J)\) because \(R\) is left and right Kasch.

(4): follows from (2) and (3).

(5): follows from Proposition 3.7 and [10, Theorem 5.31]. □

Remark. There exists a semiprimary and right simple-FJ-injective ring, but it can not be right simple-injective. On the other hand, there is a ring \(R\) that is right simple-FJ-injective but not right \(SP\)-injective (see [20, Example 1.7]).

From the above proposition, we have the following result.

Proposition 3.9. If \(R\) is a right simple-FJ-injective ring with \(\text{ACC}\) on right annihilators in which \(S_r \leq^e R_R\), then \(R\) is \(QF\).

Proof. By [13, Theorem 2.1] or [14, Lemma 2.11], \(R\) is semiprimary. Hence \(R\) is left and right mininjective by Proposition 3.8. Thus \(R\) is \(QF\). □

Corollary 3.10 ([14, Theorem 2.15]). If \(R\) is a right simple-injective ring with \(\text{ACC}\) on right annihilators in which \(S_r \leq^e R_R\) then \(R\) is \(QF\).

Recall that a ring \(R\) is called right pseudo-coherent if \(r(S)\) is finitely generated for every finite subset \(S\) of \(R\) (see [3]). Chen and Ding [5] proved that if \(R\) is a left perfect, right simple-injective and right (or left) pseudo-coherent ring, then \(R\) is \(QF\). They gave a question: If \(R\) is a right simple-injective ring which is also right perfect and right (or left) pseudo-coherent, is \(R\) a \(QF\) ring? The following results are motivated by this question.

Firstly, we have the following result

Lemma 3.11 (Osofsky’s Lemma). If \(R\) is a left perfect ring in which \(J/J^2\) is right finitely generated, then \(R\) is right Artinian.

Theorem 3.12. Assume that \(R\) is left perfect, right simple-FJ-injective. If \(R\) is right (or left) pseudo-coherent ring, then \(R\) is \(QF\).

Proof. Since \(R\) is left perfect, \(\text{Soc}(e R) \neq 0\) for each local idempotent \(e \in R\). Thus by Proposition 3.8, \(J = r(S) = l(S)\) with \(S = S_r = S_l = r(J) = l(J)\) is a finitely generated left and right ideal. Hence by hypothesis, \(R\) is left (or right)
pseudo-coherent, and so \(J \) is a finitely generated left (or right) ideal. If \(J \) is a finitely generated right \(R \)-module, then \(J/J^2 \) is too. Consequently, \(R \) is right Artinian by Lemma 3.11. If \(J \) is a finitely generated left \(R \)-module, then \(J \) is nilpotent by [10, Lemma 5.64], and so \(R \) is semiprimary. Hence \(R \) is left Artinian by Lemma 3.11. Thus \(R \) is QF. \(\square \)

Corollary 3.13 ([5], Theorem 2.6). Assume that \(R \) is left perfect, right simple-injective. If \(R \) a is right (or left) pseudo-coherent ring, then \(R \) is QF.

We consider a ring which is right simple-FJ-injective and left pseudo-coherent.

Theorem 3.14. If \(R \) is a right perfect, right simple-FJ-injective and left pseudo-coherent ring then \(R \) is QF.

Proof. Since \(R \) is right perfect and left pseudo-coherent, \(R \) satisfies DCC on finitely generated left ideals. Hence if \(A \subseteq R \), \(l(A) = l(A_0) \) for some finite subset \(A_0 \) of \(A \). It follows that \(R \) satisfies DCC on left annihilators, and hence \(R \) has ACC on right annihilators. Therefore \(R \) is semiprimary by [6, Proposition 1]. Thus \(R \) is QF by Theorem 3.12. \(\square \)

Corollary 3.15. If \(R \) is a right perfect, right simple-injective and left pseudo-coherent ring, then \(R \) is QF.

Acknowledgment. The authors would like to thank the referee for the valuable suggestions and comments.

References

Le van Thuyet, Department of Mathematics, Hue University, Vietnam, *e-mail*: lvthuyethue@gmail.com

Truong Cong Quynh, Department of Mathematics, Da Nang University, Vietnam, *e-mail*: matht2q2004@hotmail.com