NEW CLASSES OF k-UNIFORMLY CONVEX AND STARLIKE FUNCTIONS WITH RESPECT TO OTHER POINTS

C. SELVARAJ and K. A. SELVAKUMARAN

Abstract. In this paper we introduce new subclasses of k-uniformly convex and starlike functions with respect to other points. We provide necessary and sufficient conditions, coefficient estimates, distortion bounds, extreme points and radii of close-to-convexity, starlikeness and convexity for these classes. We also obtain integral means inequalities with the extremal functions for these classes.

1. Introduction, Definitions and Preliminaries

Let A denote the class of functions given by

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are regular in the unit disc $D = \{ z : |z| < 1 \}$ and normalized by $f(0) = f'(0) - 1 = 0$. Let S be the subclass of A consisting of functions that are regular and univalent in D. Let S^* be the subclass of S consisting of functions starlike in D. It is known that $f \in S^*$ if and only if $\Re \left\{ \frac{zf'(z)}{f(z) - f(-z)} \right\} > 0$, $z \in D$.

In [6], Sakaguchi defined the class of starlike functions with respect to symmetric points as follows:

Let $f \in S$. Then f is said to be starlike with respect to symmetric points in D if and only if

$$\Re \left\{ \frac{zf'(z)}{f(z) - f(-z)} \right\} > 0, \quad z \in D.$$

We denote this class by S^*_s. Obviously, it forms a subclass of close-to-convex functions and hence univalent. Moreover, this class includes the class of convex functions and odd starlike functions with respect to the origin, see [6]. EL-Ashwah and Thomas in [2] introduced two other classes, namely the class S^*_c consisting of functions starlike with respect to conjugate points and S^*_sc consisting of functions starlike with respect to symmetric conjugate points.
Motivated by S_s^*, many authors discussed the following class C_s^* of functions convex with respect to symmetric points and its subclasses (See [4, 5, 7, 11]).

Let $f \in S$. Then f is said to be convex with respect to symmetric points in D if and only if

\[
\text{Re}\left\{ \frac{(zf'(z))'}{f'(z) + f'(-z)} \right\} > 0, \quad z \in D.
\]

Let T denote the class consisting of functions f of the form

\[
f(z) = z - \sum_{n=2}^{\infty} a_n z^n,
\]

where a_n is a non-negative real number.

Silverman [8] introduced and investigated the following subclasses of T:

\[
T_s^*(\alpha) := S_s^*(\alpha) \cap T \quad \text{and} \quad C_s^*(\alpha) := K_s(\alpha) \cap T \quad (0 \leq \alpha < 1).
\]

In this paper we introduce the class $S_s(\lambda, k, \beta)$ of functions regular in D given by (1) and defined as follows

Definition 1.1. A function $f(z) \in A$ is said to be in the class $S_s(\lambda, k, \beta)$ if for all $z \in D$,

\[
\text{Re}\left[\frac{2zf'(z) + 2\lambda z^2f''(z)}{(1-\lambda)(f(z) - f(-z)) + \lambda(f'(z) + f'(-z))} \right] > k \left| \frac{2zf'(z) + 2\lambda z^2f''(z)}{(1-\lambda)(f(z) - f(-z)) + \lambda(f'(z) + f'(-z))} - 1 \right| + \beta,
\]

for some $0 \leq \lambda \leq 1$, $0 \leq \beta < 1$ and $k \geq 0$.

For suitable values of λ, k, β the class of functions $S_s(\lambda, k, \beta)$ reduces to various new classes of regular functions. We also observe that

\[
S_s(0, 0, 0) \equiv S_s^* \quad \text{and} \quad S_s(1, 0, 0) \equiv C_s^*.
\]

We now let $T_s(\lambda, k, \beta) = S_s(\lambda, k, \beta) \cap T$.

In the present investigation of the function class $T_s(\lambda, k, \beta)$ we obtain necessary and sufficient conditions, coefficient estimates, distortion bounds, extreme points, radii of close-to-convexity, starlikeness and convexity. We also obtain integral means inequality for the functions belonging to this class. Analogous results are also obtained for the class of functions $f \in T$ and k-uniformly convex and starlike with respect to conjugate points. The class is defined below:

Definition 1.2. A function $f(z) \in A$ is said to be in the class $S_s(\lambda, k, \beta)$ if for all $z \in D$,

\[
\text{Re}\left[\frac{2zf'(z) + 2\lambda z^2f''(z)}{(1-\lambda)(f(z) + f(\bar{z})) + \lambda(f'(z) + f'(\bar{z}))} \right] > k \left| \frac{2zf'(z) + 2\lambda z^2f''(z)}{(1-\lambda)(f(z) + f(\bar{z})) + \lambda(f'(z) + f'(\bar{z}))} - 1 \right| + \beta,
\]

for some $0 \leq \lambda \leq 1$, $0 \leq \beta < 1$ and $k \geq 0$.
Here we let $T_{S_c}(\lambda, k, \beta) = S_c(\lambda, k, \beta) \cap T$.
We now state two lemmas which we may need to establish our results in the sequel.

Lemma 1.3. If β is a real number and w is a complex number, then
\[
\Re(w) \geq \beta \Leftrightarrow |w + (1 - \beta)| - |w - (1 + \beta)| \geq 0.
\]

Lemma 1.4. If w is a complex number and β, k are real numbers, then
\[
\Re(w) \geq k|w - 1| + \beta \Leftrightarrow \Re\{w(1 + ke^{i\theta}) - ke^{i\theta}\} \geq \beta, \quad -\pi \leq \theta \leq \pi.
\]

2. **Coefficient Inequalities**

We employ the technique adopted by Aqlan et al. [1] to find the coefficient estimates for the function class $T_{S_c}(\lambda, k, \beta)$.

Theorem 2.1. A function $f \in T_{S_c}(\lambda, k, \beta)$ if and only if
\[
\sum_{n=2}^{\infty} \left[2(1 + k)n - (k + \beta)(1 - (-1)^n)\right](1 - \lambda + \lambda n)a_n \leq 2(1 - \beta)
\]
for $0 \leq \lambda \leq 1, \ 0 \leq \beta < 1$ and $k \geq 0$.

Proof. Let a function $f(z)$ of the form (2) in T satisfy the condition (5). We will show that (3) is satisfied and so $f \in T_{S_c}(\lambda, k, \beta)$. Using Lemma 1.4 it is enough to show that
\[
\Re\left\{2zf'(z) + 2\lambda z^2f''(z)\left(1 - \lambda + \lambda n\right)a_n \right\} \geq \beta,
\]
\[-\pi \leq \theta \leq \pi.
\]
That is, \(\Re\left\{\frac{A(z)}{B(z)}\right\} \geq \beta\), where
\[
A(z) := [2zf'(z) + 2\lambda z^2f''(z)](1 + k e^{i\theta}) - ke^{i\theta}\left(1 - \lambda\right)(f(z) - f(-z)) + \lambda z(f'(z) + f'(-z)),
\]
\[
B(z) := (1 - \lambda)(f(z) - f(-z)) + \lambda z(f'(z) + f'(-z)).
\]
In view of Lemma 1.3, we only need to prove that
\[
|A(z) + (1 - \beta)B(z)| - |A(z) - (1 + \beta)B(z)| \geq 0.
\]
For $A(z)$ and $B(z)$ as above, we have
\[
|A(z) + (1 - \beta)B(z)|
\]
\[
= \left| (4 - 2\beta)z - \sum_{n=2}^{\infty} [2n + (1 - \beta)(1 - (-1)^n)](1 - \lambda + \lambda n)a_n z^n - ke^{i\theta} \sum_{n=2}^{\infty} [2n - (1 - (-1)^n)](1 - \lambda + \lambda n)a_n z^n \right|
\]
\[C. SELLVARAJ \text{ and K. A. SELVAKUMARAN} \]

\[\geq (4 - 2\beta)|z| - \sum_{n=2}^{\infty} [2n + (1 - \beta)(1 - (-1)^n)](1 - \lambda + \lambda n)a_n |z|^n \]
\[-k \sum_{n=2}^{\infty} [2n - (1 - (-1)^n)](1 - \lambda + \lambda n)a_n |z|^n.\]

Similarly, we obtain
\[|A(z) - (1 + \beta)B(z)| \leq 2\beta|z| + \sum_{n=2}^{\infty} [2n - (1 + \beta)(1 - (-1)^n)](1 - \lambda + \lambda n)a_n |z|^n \]
\[+ k \sum_{n=2}^{\infty} [2n - (1 - (-1)^n)](1 - \lambda + \lambda n)a_n |z|^n.\]

Therefore, we have
\[|A(z) + (1 - \beta)B(z)| - |A(z) - (1 + \beta)B(z)| \geq 4(1 - \beta)|z| - 2 \sum_{n=2}^{\infty} [2(1 + k)n - (k + \beta)(1 - (-1)^n)](1 - \lambda + \lambda n)a_n |z|^n \]
\[\geq 0,\]
by the given condition (5). Conversely, suppose \(f \in TS_{s}(\lambda, k, \beta)\). Then by Lemma 1.4 we have (6). Choosing the values of \(z\) on the positive real axis the inequality (6) reduces to
\[\text{Re}\left\{ \frac{2(1 - \beta)}{2 - \sum_{n=2}^{\infty} (1 - \lambda + \lambda n)(1 - (-1)^n)a_n z^{n-1}} \right\} \geq 0.\]

In view of the elementary identity \(\text{Re}(e^{i\theta}) \geq -|e^{i\theta}| = -1\), the above inequality becomes
\[\text{Re}\left\{ \frac{2(1 - \beta)}{2 - \sum_{n=2}^{\infty} (1 - \lambda + \lambda n)(1 - (-1)^n)a_n r^{n-1}} \right\} \geq 0.\]

Letting \(r \to 1^{-}\) we get the desired inequality (5).

The following coefficient estimate for \(f \in TS_{s}(\lambda, k, \beta)\) is an immediate consequence of Theorem 2.1.

Theorem 2.2. If \(f \in TS_{s}(\lambda, k, \beta)\), then
\[a_n \leq \frac{2(1 - \beta)}{\Phi(\lambda, k, \beta, n)}, \quad n \geq 2\]
where $\Phi(\lambda, k, \beta, n) = (1 - \lambda + \lambda n)[2(1 + k)n - (k + \beta)(1 - (-1)^n)]$.

The equality holds for the function

$$f(z) = z - \frac{2(1 - \beta)}{\Phi(\lambda, k, \beta, n)} z^n.$$

We now state coefficient properties for the functions belonging to the class $\mathcal{TS}_c(\lambda, k, \beta)$. Method of proving Theorem 2.3 is similar to that of Theorem 2.1.

Theorem 2.3. A function $f \in \mathcal{TS}_c(\lambda, k, \beta)$ if and only if

$$\sum_{n=2}^{\infty} [1 + k - (k + \beta)](1 - \lambda + \lambda n)a_n \leq (1 - \beta)$$

for $0 \leq \lambda \leq 1$, $0 \leq \beta < 1$ and $k \geq 0$.

Theorem 2.4. If $f \in \mathcal{TS}_c(\lambda, k, \beta)$, then

$$a_n \leq \frac{(1 - \beta)}{\Theta(\lambda, k, \beta, n)}$$

for $n \geq 2$, where $\Theta(\lambda, k, \beta, n) = (1 - \lambda + \lambda n)[1 + k - (k + \beta)]$.

The equality holds for the function

$$f(z) = z - \frac{(1 - \beta)}{\Theta(\lambda, k, \beta, n)} z^n.$$

3. Distortion and Covering Theorems

Theorem 3.1. Let f be defined by (2). If $f \in \mathcal{TS}_s(\lambda, k, \beta)$ and $|z| = r < 1$, then we have the sharp bounds

$$r - \frac{1 - \beta}{2(1 + k)(1 + \lambda)} r^2 \leq |f(z)| \leq r + \frac{1 - \beta}{2(1 + k)(1 + \lambda)} r^2$$

and

$$1 - \frac{1 - \beta}{(1 + k)(1 + \lambda)} r \leq |f'(z)| \leq 1 + \frac{1 - \beta}{(1 + k)(1 + \lambda)} r.$$

Proof. We only prove the right side inequality in (8), since the other inequalities can be justified using similar arguments.

First, it is obvious that

$$4(1 + k)(1 + \lambda) \sum_{n=2}^{\infty} a_n \leq \sum_{n=2}^{\infty} [2(1 + k)n - (k + \beta)(1 - (-1)^n)](1 - \lambda + \lambda n)a_n$$

and as $f \in \mathcal{TS}_s(\lambda, k, \beta)$, the inequality (5) yields

$$\sum_{n=2}^{\infty} a_n \leq \frac{1 - \beta}{2(1 + k)(1 + \lambda)}.$$
From (2) with \(|z| = r (r < 1)\), we have

\[|f(z)| \leq r + \sum_{n=2}^{\infty} a_n r^n \leq r + \sum_{n=2}^{\infty} a_n r^n \leq r + \frac{1 - \beta}{2(1 + k)(1 + \lambda)} r^2. \]

The distortion bounds in Theorem 3.1 are sharp for

\[f(z) = z - \frac{1 - \beta}{2(1 + k)(1 + \lambda)} z^2, \quad z = \pm r. \]

\[(9) \]

\[\square \]

Theorem 3.2. If \(f \in TS_s(\lambda, k, \beta) \), then \(f \in T^*(\delta) \), where

\[\delta = 1 - \frac{1 - \beta}{2(1 + k)(1 + \lambda) - (1 - \beta)} \]

The result is sharp for the function given by (9).

Proof. It is sufficient to show that (5) implies

\[\sum_{n=2}^{\infty} (n - \delta) a_n \leq 1 - \delta \]

that is

\[\frac{n - \delta}{1 - \delta} \leq \frac{[2(1 + k)n - (k + \beta)(1 - (1)^n)](1 - \lambda + \lambda n)}{2(1 - \beta)}, \quad n \geq 2. \]

(10)

Since, (10) is equivalent to

\[\delta \leq 1 - \frac{2(n - 1)(1 - \beta)}{[2(1 + k)n - (k + \beta)(1 - (-1)^n)](1 - \lambda + \lambda n) - 2(1 - \beta)} = \psi(n), \quad n \geq 2 \]

and \(\psi(n) \leq \psi(2) \), (10) holds true for any \(n \geq 2, k \geq 0 \) and \(0 \leq \beta < 1 \). This completes the proof of Theorem 3.2. \(\square \)

For completeness, we now state the following results with regards to the class \(TS_c(\lambda, k, \beta) \).

Theorem 3.3. Let \(f \) be defined by (2) and \(f \in TS_c(\lambda, k, \beta) \). Then for \(\{ z : 0 < |z| = r < 1 \} \) we have the sharp bounds

\[r - \frac{1 - \beta}{(2 + k - \beta)(1 + \lambda)} r^2 \leq |f(z)| \leq r + \frac{1 - \beta}{(2 + k - \beta)(1 + \lambda)} r^2 \]

and

\[1 - \frac{2(1 - \beta)}{(2 + k - \beta)(1 + \lambda)} r \leq |f'(z)| \leq 1 + \frac{2(1 - \beta)}{(2 + k - \beta)(1 + \lambda)} r. \]

The result in (11) is sharp for the function

\[f(z) = z - \frac{1 - \beta}{(2 + k - \beta)(1 + \lambda)} z^2, \quad z = \pm r. \]

(12)
Theorem 3.4. If \(f \in TS_c(\lambda, k, \beta) \), then \(f \in T^*(\delta) \), where
\[
\delta = 1 - \frac{1 - \beta}{(2 + k - \beta)(1 + \lambda) - (1 - \beta)}.
\]
The result is sharp for the function given by (12).

4. Extreme Points

Theorem 4.1. Let \(f_1(z) = z \) and
\[
f_n(z) = z - \frac{2(1 - \beta)}{\Phi(\lambda, k, \beta, n)} z^n \quad (n \geq 2),
\]
where \(\Phi(\lambda, k, \beta, n) \) is defined in Theorem 2.2. Then \(f(z) \) is in \(TS_s(\lambda, k, \beta) \) if and only if it can be expressed in the form \(f(z) = \sum_{n=1}^{\infty} \lambda_n f_n(z) \) where \(\lambda_n \geq 0 \) and \(\sum_{n=1}^{\infty} \lambda_n = 1 \).

Proof. Adopting the same technique used by Silverman [8], we first assume that
\[
f(z) = \sum_{n=1}^{\infty} \lambda_n f_n(z) = z - \sum_{n=2}^{\infty} \lambda_n \left[\frac{2(1 - \beta)}{\Phi(\lambda, k, \beta, n)} z^n \right].
\]
\[
\sum_{n=2}^{\infty} \lambda_n \left\{ \frac{2(1 - \beta)}{\Phi(\lambda, k, \beta, n)} \right\} \cdot \left[\frac{\Phi(\lambda, k, \beta, n)}{2(1 - \beta)} \right] = \sum_{n=2}^{\infty} \lambda_n = 1 - \lambda_1 \leq 1.
\]
Therefore by Theorem 2.1, \(f \in TS_s(\lambda, k, \beta) \).
Conversely, suppose \(f \in TS_s(\lambda, k, \beta) \). Then by Theorem 2.2
\[
a_n \leq \frac{2(1 - \beta)}{\Phi(\lambda, k, \beta, n)}, \quad n \geq 2.
\]
Now, by letting
\[
\lambda_n = \left\{ \frac{\Phi(\lambda, k, \beta, n)}{2(1 - \beta)} \right\} a_n, \quad n \geq 2
\]
and \(\lambda_1 = 1 - \sum_{n=2}^{\infty} \lambda_n \) we conclude the theorem, since
\[
f(z) = \sum_{n=1}^{\infty} \lambda_n f_n = \lambda_1 f_1(z) + \sum_{n=2}^{\infty} \lambda_n f_n(z).
\]

\(\Box \)

Now, we give extreme points for functions belonging to \(TS_c(\lambda, k, \beta) \). We omit the proof of Theorem 4.2 as it is similar to that of Theorem 4.1.

Theorem 4.2. Let \(f_1(z) = z \) and
\[
f_n(z) = z - \frac{(1 - \beta)}{\Theta(\lambda, k, \beta, n)} z^n \quad (n \geq 2),
\]
where \(\Theta(\lambda, k, \beta, n) \) is defined in Theorem 2.4. Then \(f(z) \) is in \(TS_c(\lambda, k, \beta) \) if and only if it can be expressed in the form \(f(z) = \sum_{n=1}^{\infty} \lambda_n f_n(z) \) where \(\lambda_n \geq 0 \) and \(\sum_{n=1}^{\infty} \lambda_n = 1 \).
5. Radii of Close-To-Convexity, Starlikeness and Convexity

Theorem 5.1. If \(f(z) \in TS_s(\lambda, k, \beta) \), then \(f \) is close-to-convex of order \(\gamma \) (\(0 \leq \gamma < 1 \)) in \(|z| < r_1(\lambda, k, \beta, \gamma) \), where

\[
r_1(\lambda, k, \beta, \gamma) = \inf_n \left\{ \frac{(1-\gamma)\Phi(\lambda, k, \beta, n)}{2n(1-\beta)} \right\}^{\frac{1}{n-1}}, \quad n \geq 2
\]

and \(\Phi(\lambda, k, \beta, n) \) is defined in Theorem 2.2.

Proof. By a computation, we have

\[
|f'(z) - 1| = \left| -\sum_{n=2}^{\infty} na_n z^{n-1} \right| \leq \sum_{n=2}^{\infty} na_n |z|^{n-1}.
\]

Now, \(f \) is close-to-convex of order \(\gamma \) if we have the condition

\[
\sum_{n=2}^{\infty} \left(\frac{n}{1-\gamma} \right) a_n |z|^{n-1} \leq 1.
\]

Considering the coefficient conditions required by Theorem 2.1, the above inequality (14) is true if

\[
\left(\frac{n}{1-\gamma} \right) |z|^{n-1} \leq \frac{\Phi(\lambda, k, \beta, n)}{2(1-\beta)},
\]

or if

\[
|z| \leq \left\{ \frac{(1-\gamma)\Phi(\lambda, k, \beta, n)}{2(n-\gamma)(1-\beta)} \right\}^{\frac{1}{n-1}}, \quad n \geq 2.
\]

This last expression yields the bound required by the above theorem.

Theorem 5.2. If \(f(z) \in TS_s(\lambda, k, \beta) \), then \(f \) is starlike of order \(\gamma \) (\(0 \leq \gamma < 1 \)) in \(|z| < r_2(\lambda, k, \beta, \gamma) \), where

\[
r_2(\lambda, k, \beta, \gamma) = \inf_n \left\{ \frac{(1-\gamma)\Phi(\lambda, k, \beta, n)}{2(n-\gamma)(1-\beta)} \right\}^{\frac{1}{n-1}}, \quad n \geq 2
\]

and \(\Phi(\lambda, k, \beta, n) \) is defined in Theorem 2.2.

Proof. By a computation, we have

\[
\left| \frac{zf'(z)}{f(z)} - 1 \right| = \left| -\sum_{n=2}^{\infty} \frac{(n-1)a_n z^{n-1}}{1 - \sum_{n=2}^{\infty} a_n z^{n-1}} \right| \leq \sum_{n=2}^{\infty} \frac{(n-1)a_n |z|^{n-1}}{1 - \sum_{n=2}^{\infty} a_n |z|^{n-1}}.
\]
Now, f is starlike of order γ if we have the condition
\begin{equation}
\sum_{n=2}^{\infty} \left(\frac{n - \gamma}{1 - \gamma} \right) a_n |z|^{n-1} \leq 1.
\end{equation}

Considering the coefficient conditions required by Theorem 2.1, the above inequality (16) is true if
\begin{equation}
\frac{n - \gamma}{1 - \gamma} |z|^{n-1} \leq \frac{\Phi(\lambda, k, \beta, n)}{2(1 - \beta)}
\end{equation}
or if
\begin{equation}
|z| \leq \left\{ \frac{(1 - \gamma)\Phi(\lambda, k, \beta, n)}{2(n - \gamma)(1 - \beta)} \right\}^{\frac{1}{1 - \gamma}}, \quad n \geq 2.
\end{equation}

This last expression yields the bound required by the above theorem.

\begin{flushright}
\Box
\end{flushright}

Theorem 5.3. If $f(z) \in TS_s(\lambda, k, \beta)$, then f is convex of order γ ($0 \leq \gamma < 1$) in $|z| < r_3(\lambda, k, \beta, \gamma)$, where
\begin{equation}
r_3(\lambda, k, \beta, \gamma) = \inf_n \left\{ \frac{(1 - \gamma)\Phi(\lambda, k, \beta, n)}{2n(n - \gamma)(1 - \beta)} \right\}^{\frac{1}{1 - \gamma}}, \quad n \geq 2
\end{equation}
and $\Phi(\lambda, k, \beta, n)$ is defined in Theorem 2.2.

\begin{flushright}
Proof. By a computation, we have
\end{flushright}

\begin{equation}
\frac{|zf''(z)|}{f'(z)} \leq \frac{-\sum_{n=2}^{\infty} n(n-1)a_n z^{n-1}}{1 - \sum_{n=2}^{\infty} na_n z^{n-1}} \leq \frac{\sum_{n=2}^{\infty} n(n-1)a_n |z|^{n-1}}{1 - \sum_{n=2}^{\infty} na_n |z|^{n-1}}.
\end{equation}

Now, f is convex of order γ if we have the condition
\begin{equation}
\sum_{n=2}^{\infty} \frac{n(n - \gamma)}{1 - \gamma} a_n |z|^{n-1} \leq 1.
\end{equation}

Considering the coefficient conditions required by Theorem 2.1, the above inequality (18) is true if
\begin{equation}
\frac{n(n - \gamma)}{1 - \gamma} |z|^{n-1} \leq \frac{\Phi(\lambda, k, \beta, n)}{2(1 - \beta)}
\end{equation}
or if
\begin{equation}
|z| \leq \left\{ \frac{(1 - \gamma)\Phi(\lambda, k, \beta, n)}{2n(n - \gamma)(1 - \beta)} \right\}^{\frac{1}{1 - \gamma}}, \quad n \geq 2.
\end{equation}

This last expression yields the bound required by the above theorem. \hfill \Box

For completeness, we give, without proof, theorem concerning the radii of close-to-convexity, starlikeness and convexity for the class $TS_c(\lambda, k, \beta)$.
Theorem 5.4. If \(f(z) \in TS_c(\lambda, k, \beta) \), then \(f \) is close-to-convex of order \(\gamma \) (\(0 \leq \gamma < 1 \)) in \(|z| < r_4(\lambda, k, \beta, \gamma) \), where

\[
(19) \quad r_4(\lambda, k, \beta, \gamma) = \inf_n \left\{ \frac{(1 - \gamma)\Theta(\lambda, k, \beta, n)}{n(1 - \beta)} \right\}^{\frac{1}{n-1}}, \quad n \geq 2
\]

and \(\Theta(\lambda, k, \beta, n) \) is defined in Theorem 2.4.

Theorem 5.5. If \(f(z) \in TS_c(\lambda, k, \beta) \), then \(f \) is starlike of order \(\gamma \) (\(0 \leq \gamma < 1 \)) in \(|z| < r_5(\lambda, k, \beta, \gamma) \), where

\[
(20) \quad r_5(\lambda, k, \beta, \gamma) = \inf_n \left\{ \frac{(1 - \gamma)\Theta(\lambda, k, \beta, n)}{(n - \gamma)(1 - \beta)} \right\}^{\frac{1}{n-1}}, \quad n \geq 2
\]

and \(\Theta(\lambda, k, \beta, n) \) is defined in Theorem 2.4.

Theorem 5.6. If \(f(z) \in TS_c(\lambda, k, \beta) \), then \(f \) is convex of order \(\gamma \) (\(0 \leq \gamma < 1 \)) in \(|z| < r_6(\lambda, k, \beta, \gamma) \), where

\[
(21) \quad r_6(\lambda, k, \beta, \gamma) = \inf_n \left\{ \frac{(1 - \gamma)\Theta(\lambda, k, \beta, n)}{n(n - \gamma)(1 - \beta)} \right\}^{\frac{1}{n-1}}, \quad n \geq 2
\]

and \(\Theta(\lambda, k, \beta, n) \) is defined in Theorem 2.4.

6. Integral Means Inequalities

In [8], Silverman found that the function \(f_2(z) = z - \frac{z^2}{\pi} \) is often extremal over the family \(T \). He applied this function to resolve his integral means inequality, conjectured in [9] and settled in [10], that

\[
\int_0^{2\pi} |f(re^{i\theta})|^n d\theta \leq \int_0^{2\pi} |f_2(re^{i\theta})|^n d\theta,
\]

for all \(f \in T, n > 0 \) and \(0 < r < 1 \). In [10], he also proved his conjecture for the subclasses \(T^*(\alpha) \) and \(C(\alpha) \) of \(T \).

Now, we prove Silverman’s conjecture for the class of functions \(TS_c(\lambda, k, \beta) \). An analogous result is also obtained for the family of functions \(TS_c(\lambda, k, \beta) \).

We need the concept of subordination between analytic functions and a subordination theorem of Littlewood [3].

Two given functions \(f \) and \(g \), which are analytic in \(D \), the function \(f \) is said to be subordinate to \(g \) in \(D \) if there exists a function \(w \) analytic in \(D \) with

\[
w(0) = 0, \quad |w(z)| < 1 \quad (z \in D),
\]

such that

\[
f(z) = g(w(z)) \quad (z \in D).
\]

We denote this subordination by \(f(z) \prec g(z) \).
Lemma 6.1. If the functions f and g are analytic in D with $f(z) \prec g(z)$, then for $\eta > 0$ and $z = r e^{i\theta}$ ($0 < r < 1$)

$$\int_0^{2\pi} |g(r e^{i\theta})|^\eta d\theta \leq \int_0^{2\pi} |f(r e^{i\theta})|^\eta d\theta.$$

Now, we discuss the integral means inequalities for functions f in $TS_s(\lambda, k, \beta)$.

Theorem 6.2. Let $f \in TS_s(\lambda, k, \beta)$, $0 \leq \lambda \leq 1$, $0 \leq \beta < 1$, $k \geq 0$ and $f_2(z)$ be defined by

$$f_2(z) = z - \frac{2(1 - \beta)}{\Phi(\lambda, k, \beta, 2)} z^2,$$

where $\Phi(k, \beta, \lambda, n)$ is defined in Theorem 2.2. Then for $z = r e^{i\theta}$, $0 < r < 1$, we have

(22) $$\int_0^{2\pi} |f(z)|^\eta d\theta \leq \int_0^{2\pi} |f_2(z)|^\eta d\theta.$$

Proof. For $f(z) = z - \sum_{n=2}^{\infty} a_n z^n$, (22) is equivalent to

$$\int_0^{2\pi} \left| 1 - \sum_{n=2}^{\infty} a_n z^{n-1} \right|^{\eta} d\theta \leq \int_0^{2\pi} \left| 1 - \frac{2(1 - \beta)}{\Phi(\lambda, k, \beta, 2)} z \right|^{\eta} d\theta.$$

By Lemma 6.1, it is enough to prove that

$$1 - \sum_{n=2}^{\infty} a_n z^{n-1} \prec 1 - \frac{2(1 - \beta)}{\Phi(\lambda, k, \beta, 2)} z.$$

Assuming

$$1 - \sum_{n=2}^{\infty} a_n z^{n-1} = 1 - \frac{2(1 - \beta)}{\Phi(\lambda, k, \beta, 2)} w(z),$$

and using (5), we obtain

$$|w(z)| = \left| \sum_{n=2}^{\infty} \frac{\Phi(\lambda, k, \beta, 2)}{2(1 - \beta)} a_n z^{n-1} \right| \leq |z| \sum_{n=2}^{\infty} \frac{\Phi(\lambda, k, \beta, n)}{2(1 - \beta)} a_n \leq |z|.$$

This completes the proof by Theorem 2.1.

For completeness, we now give the integral means inequality for the class $TS_c(\lambda, k, \beta)$. The method of proving Theorem 6.3 is similar as that of Theorem 6.2.
Theorem 6.3. Let \(f \in TS_c(\lambda, k, \beta) \), \(0 \leq \lambda \leq 1 \), \(0 \leq \beta < 1 \), \(k \geq 0 \) and \(f_2(z) \) be defined by
\[
f_2(z) = z - \frac{(1 - \beta)}{\Theta(\lambda, k, \beta, 2)} z^2,
\]
where \(\Theta(\lambda, k, \beta, n) \) is defined in Theorem 2.4. Then for \(z = r e^{i\theta} \), \(0 < r < 1 \), we have
\[
\int_0^{2\pi} |f(z)|^\eta d\theta \leq \int_0^{2\pi} |f_2(z)|^\eta d\theta.
\]

References
9. __________, A survey with open problems on univalent functions whose coefficients are negative, Rocky Mountain J. Math. 21(3) (1991), 1099–1125.

C. Selvaraj, Department of Mathematics, Presidency College (Autonomous), Chennai-600 005, India, e-mail: pamc9439@yahoo.co.in

K. A. Selvakumaran, Department of Mathematics, R.M.K. Engg. College, Kavaraipettai-601 206, India, e-mail: selvaa1826@gmail.com