TRANSVERSALS OF RECTANGULAR ARRAYS

S. SZABÓ

Abstract. The paper deals with \(m \times n \) rectangular arrays whose \(mn \) cells are filled with symbols. A section of the array consists of \(m \) cells, one from each row and no two from the same column. The paper focuses on the existence of sections that do contain symbols with high multiplicity.

1. Introduction

An \(n \times n \) array of cells filled with symbols 1, 2, \ldots, \(n \) such that each symbol appears in each row and each column exactly once is called a Latin square. A section is a set of \(n \) cells, one from each row such that no two cells are in the same column. A section is called a transversal if each of its symbols is distinct. H. J. Ryser [5] conjectured that every \(n \times n \) Latin square has a transversal for odd \(n \). P. W. Shor [6] proved that an \(n \times n \) Latin square has a section with \(n - 5.53(\ln n)^2 \) distinct symbols. S. K. Stein [7] showed that if an \(n \times n \) array is filled with symbols 1, 2, \ldots, \(n \) such that each symbol appears exactly \(n \) times then there is a section with 0.634 \(n \) distinct symbols. P. Erdős and J. H. Spencer [4] proved that if an \(n \times n \) array is filled with symbols such that each symbol appears at most \((n - 1)/16 \) times, then the array has a transversal. In this paper we will use the Erdős-Spencer technique to show that \(m \times n \) arrays have sections in which no symbol appears with high multiplicity.

2. The graph \(G \)

Consider an \(m \times n \) table filled with symbols 1, 2, \ldots such that each symbol appears at most \(k \) times. In order to avoid trivial cases we assume that \(2 \leq m \leq n \). For a given value of \(m \) and \(n \) there is a large number of such tables. We will work with a fixed table. The symbol in the \(a \)-th row and the \(b \)-th column is denoted by \(f(a, b) \). The \(s \) cells

\[
[x_1, y_1], \ldots, [x_s, y_s]
\]

Received June 27, 2007; revised January 12, 2008.

2000 Mathematics Subject Classification. Primary 05D15.

Key words and phrases. latin square; array; transversal; section; probabilistic method; Lovász local lemma.
in the table is called an s-clique if

(1) x_1, \ldots, x_s are distinct numbers,
(2) y_1, \ldots, y_s are distinct numbers,
(3) $f(x_1, y_1) = \cdots = f(x_s, y_s)$.

Again to avoid non-desired cases we assume that $2 \leq s \leq m \leq n$. Let T be the set of all s-cliques in the table. We define a graph G in the following way. Let the elements of T be the vertices of G. Two distinct vertices

\[
\{[x_1, y_1], \ldots, [x_s, y_s]\} \text{ and } \{[x'_1, y'_1], \ldots, [x'_s, y'_s]\}
\]

are connected if

\[
\{x_1, \ldots, x_s\} \cap \{x'_1, \ldots, x'_s\} \neq \emptyset
\]

or

\[
\{y_1, \ldots, y_s\} \cap \{y'_1, \ldots, y'_s\} \neq \emptyset.
\]

Note that the degree of a vertex of G is at most

\[
[s(m - s) + s(n - s) + s^2] \binom{k - 1}{s - 1}.
\]

The reason is the following. Choose an s-clique C. Then consider the s rows and s columns of the table that contain a cell from C. These s rows and s columns occupy $s(m - s) + s(n - s) + s^2$ cells of the table. Let us call this the shaded area of the table. Another s-clique C' is connected to C if and only if C' has a cell from the shaded area. There are at most $s(m - s) + s(n - s) + s^2$ choices for such a cell. The common cell contains a symbol. This symbol appears at most k times in the table. So there are at most \(\binom{k-1}{s-1} \) choices for the remaining $s - 1$ cells of the clique C'.

3. The Probability Space Ω

Let ω be an injective map from $\{1, \ldots, m\}$ to $\{1, \ldots, n\}$. The set of cells

\[
[i, \omega(i)], \ 1 \leq i \leq m
\]

is called a section of the table. Intuitively a section consists of m cells of the table such that no two cells are in the same row and no two cells are in the same column.

Let Ω be the probability space consisting of all sections of the table. Clearly,

\[
|\Omega| = n(n - 1) \cdots (n - m + 1).
\]

We assign the same probability to each element of Ω. For an element $\{[x_1, y_1], \ldots, [x_s, y_s]\}$ of T we define $A([x_1, y_1], \ldots, [x_s, y_s])$ to be the subset of Ω which contains all ω with $\omega(x_1) = y_1, \ldots, \omega(x_s) = y_s$. Intuitively, $A([x_1, y_1], \ldots, [x_s, y_s])$ is the set of all sections that contain the cells $[x_1, y_1], \ldots, [x_s, y_s]$. For notational convenience we number the elements of T by $1, 2, \ldots, \mu$ and identify the elements of T by their numbers. If the vertex $\{[x_1, y_1], \ldots, [x_s, y_s]\}$ is numbered by i, then $A([x_1, y_1], \ldots, [x_s, y_s])$ will be denoted by A_i. As an example suppose that
\{[1, 1], \ldots, [s, s]\} is a vertex of \(G\) and is numbered by 1. The event \(A_1\) consists of all the \(\omega\) for which

\[\omega(1) = 1, \ \omega(2) = 2, \ldots, \omega(s) = s.\]

\[
\Pr[A_1] = \frac{(n-s)[n-s-1] \cdots [n-s-(m-s)+1]}{n(n-1) \cdots (n-m+1)} \cdot \frac{1}{n(n-1) \cdots (n-s+1)} \cdot \cdots \cdot \frac{1}{n(n-1) \cdots (n-m+1)} = p.
\]

In general \(\Pr[A_i] = p\) for all \(i, 1 \leq i \leq \mu\).

4. The conditional probabilities

The content of this section is the following lemma.

Lemma 1. Suppose that the vertex 1 is not adjacent to any of the vertices 2, \ldots, \(t\) in the graph \(G\) and that \(\Pr[A_2 \cdots A_t] > 0\). Then \(\Pr[A_1|A_2 \cdots A_t] \leq p\).

Proof. By definition

\[
\Pr[A_1|A_2 \cdots A_t] = \frac{\Pr[A_1 A_2 \cdots A_t]}{\Pr[A_2 \cdots A_t]}.
\]

The event \(A_1 A_2 \cdots A_t\) is the set of all \(\omega\) for which

\[\omega \in A_1, \ \omega \not\in A_2, \ldots, \omega \not\in A_t.\]

Intuitively \(A_1 A_2 \cdots A_t\) is the set of all sections that contain the clique \(\{[1, 1], \ldots, [s, s]\}\) associated with \(A_1\) and do not contain any of the cliques associated with the events \(A_2, \ldots, A_t\). Let \(S(y_1, \ldots, y_s)\) be the set of all \(\omega\) with

\[\omega(1) = y_1, \ldots, \omega(s) = y_s, \ \omega \not\in A_2, \ldots, \omega \not\in A_t.\]

Intuitively \(S(y_1, \ldots, y_s)\) is the set of all sections that contain the clique

\[\{[1, y_1], \ldots, [s, y_s]\}\]

and do not contain any of the cliques associated with \(A_2, \ldots, A_t\). Clearly, \(S(1, \ldots, s) = A_1 A_2 \cdots A_t\) and the sets \(S(y_1, \ldots, y_s)\) form a partition of the set \(A_2 \cdots A_t\) as \(y_1, \ldots, y_s\) vary over the possible \(n(n-1) \cdots (n-s+1)\) values. Next we try to establish that \(|S(1, \ldots, s)| \leq |S(y_1, \ldots, y_s)|\). If \(S(1, \ldots, s) = \emptyset\), then \(|S(1, \ldots, s)| \leq |S(y_1, \ldots, y_s)|\) holds. So we may assume that \(S(1, \ldots, s) \neq \emptyset\). Choose an \(\omega\) from \(S(1, \ldots, s)\). Consider the cells \([1, y_1], \ldots, [s, y_s]\). Then define the sets \(A, B, C\) in the following way. Let

- \(A = \{y_1, \ldots, y_s\}\),
- \(B = \{a : a \in A, a \leq s\}\),
- \(C = \{a : a \in A, a > s, a \in \text{range of } \omega\}\).
Table 1. An illustration in the $s = 8$, $u = 3$, $v = 4$ case.

<table>
<thead>
<tr>
<th>i_1</th>
<th>i_2</th>
<th>i_3</th>
<th>i_4</th>
<th>j_1</th>
<th>j_2</th>
<th>j_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_1</td>
<td>y_2</td>
<td>y_3</td>
<td>y_4</td>
<td>y_5</td>
<td>x_1</td>
<td>x_2</td>
</tr>
<tr>
<td>j_1</td>
<td>j_2</td>
<td>j_3</td>
<td>j_4</td>
<td>j_5</td>
<td>j_6</td>
<td>j_7</td>
</tr>
</tbody>
</table>

Suppose that C has u elements, say j_1, \ldots, j_u. Then $\{1, \ldots, s\} \setminus B$ has at least u elements, say i_1, \ldots, i_v. There are x_1, \ldots, x_u such that $\omega(x_1) = j_1, \ldots, \omega(x_u) = j_u$. Clearly, $x_1, \ldots, x_u \geq s + 1$. Define ω^* by

$$\omega^*(1) = y_1, \ldots, \omega^*(s) = y_s, \quad \omega^*(x_1) = i_1, \ldots, \omega^*(x_u) = i_u$$

and $\omega^*(x) = \omega(x)$ for all $x, s + 1 \leq x \leq m, x \notin \{x_1, \ldots, x_u\}$. Note that ω^* is injective. This gives that $|S(1, \ldots, s)| \leq |S(y_1, \ldots, y_s)|$. Therefore, setting

$$\omega(1) = 1, \ldots, \omega(s) = s, \quad \omega(x_1) = j_1, \ldots, \omega(x_u) = j_u$$

and $\omega(x) = \omega^*(x)$ for all $x, s + 1 \leq x \leq m, x \notin \{x_1, \ldots, x_u\}$. Thus the map $*: S(1, \ldots, s) \to S(y_1, \ldots, y_s)$ defined by $\omega \to \omega^*$ is injective. This gives that $|S(1, \ldots, s)| \leq |S(y_1, \ldots, y_s)|$. From a given ω^* we can reconstruct ω without any ambiguity. Namely setting

$$\omega(1) = y_1, \ldots, \omega(s) = y_s, \quad \omega(x_1) = j_1, \ldots, \omega(x_u) = j_u$$

and $\omega(x) = \omega^*(x)$ for all $x, s + 1 \leq x \leq m, x \notin \{x_1, \ldots, x_u\}$. Thus the map $*: S(1, \ldots, s) \to S(y_1, \ldots, y_s)$ defined by $\omega \to \omega^*$ is injective. This gives that $|S(1, \ldots, s)| \leq |S(y_1, \ldots, y_s)|$. Table 1 illustrates our consideration in the $s = 8$, $u = 3$, $v = 4$ special case. The cells $[1, \omega(1)], \ldots, [m, \omega(m)]$ are marked with “\times” and the cells $[1, y_1], \ldots, [s, y_s]$ are marked with “\bullet.”

Now turn back to the probability estimations.

$$\Pr[A_1 \AA_2 \cdots \AA_t] = \frac{|S(1, \ldots, s)|}{|\Omega|}.$$

If $|S(1, \ldots, s)| = 0$, then $\Pr[A_1 \AA_2 \cdots \AA_t] = 0 \leq p$ and we are done. So we may assume that $|S(1, \ldots, s)| \neq 0$.

$$\Pr[\AA_2 \cdots \AA_t] = \sum_{[1, y_1], \ldots, [s, y_s]} |S(y_1, \ldots, y_s)|$$

$$\geq \frac{1}{|\Omega|} |n(n-1) \cdots (n-s+1)||S(1, \ldots, s)|.$$
Thus
\[\Pr[A_1 | \Lambda_2 \cdots \Lambda_t] \leq \frac{1}{n(n-1)\cdots(n-s+1)} = p. \]
□

5. Applications

We quote a version of the Lovász local lemma. For more details see [1].

Lemma 2. Let \(A_1, \ldots, A_\mu \) be events in a probability space \(\Omega \) such that \(\Pr[A_1] = \cdots = \Pr[A_\mu] = p \). Let \(G \) be a graph on \(\{1, \ldots, \mu\} \) such that each vertex in \(G \) has degree at most \(d \). Suppose that
\[
\Pr[A_i | A_j \cdots A_j(1) \cdots A_j(t)] \leq p \quad \text{whenever } i \text{ is not adjacent to any of the vertices } j(1), \ldots, j(t).
\]
Then \(4dp \leq 1 \) implies \(\Pr[\Lambda_1 \cdots \Lambda_\mu] > 0 \).

Let us turn to the applications.

(a) In the \(s = 2 \) case \(d = 2(m+n-2)(k-1) \), \(p = 1/[n(n-1)] \). If \(k-1 \leq [n(n-1)]/[8(m+n-2)] \), then the \(4dp \leq 1 \) condition holds and the Lovász local lemma guarantees the existence of a transversal. When \(m = n \), this reduces to a result similar to that of Erdős and Spencer.

In the remaining part we consider only \(n \) by \(n \) arrays, that is, we will assume that \(m = n \).

(b) In the \(s = 3 \) case \(d = (6n-9)(k-1)(k-2)/2 \), \(p = 1/[n(n-1)(n-2)] \). If
\[
\frac{n(n-1)(n-2)}{2(6n-9)(k-1)(k-2)} \geq 1
\]
then the condition \(4dp \leq 1 \) holds and by the Lovász local lemma there is a section in which each symbol appears at most twice. We can say that for large \(n \) if each symbol appears at most 0.28n times in the table, then there is a section in which no symbol appears more than twice.

We would like to point out that P. J. Cameron and I. M. Wanless [2] show that every Latin square of order \(n \) contains a section in which no symbol occurs more than twice.

We single out one more special case. In this case each symbol appears at most \(n \) times in an \(n \) by \(n \) table. So the conditions are similar to the conditions of Stein’s result described in the introduction.

(c) In the \(s = 6 \) case \(d = (12n-36)(k-1) \cdots (k-5)/120 \), \(p = 1/[n(n-1)\cdots(n-5)] \). If \(k = n \), then the condition \(4dp \leq 1 \) holds and by the Lovász local lemma there is a section in which each symbol appears at most 5 times.

Acknowledgement. Thanks for Professor Sherman K. Stein to the stimulating ideas and correspondence on the subject. Also thanks for the anonymous referee to the valuable suggestions.
REFERENCES

S. Szabó, Institute Mathematics and Informatics, University Pécs, Hungary, e-mail: sszabo7@hotmail.com