ON THE VOLUME OF THE Trajectory SURFACES UNDER THE HOMOTHETIC MOTIONS

M. DÜLDÜL AND N. KURUOĞLU

Abstract. The volumes of the surfaces of 3-dimensional Euclidean Space which are traced by a fixed point as a trajectory surface during 3-parametric motions are given by H. R. Müller [3], [4], [5] and W. Blaschke [1].

In this paper, the volumes of the trajectory surfaces of fixed points under 3-parametric homothetic motions are computed. Also, using a certain pseudo-Euclidean metric we generalized the well-known classical Holditch Theorem, [2], to the trajectory surfaces.

1. Introduction

Let R and R' be moving and fixed spaces and $\{O; e_1, e_2, e_3\}$ and $\{O'; e_1', e_2', e_3'\}$ be their orthonormal coordinate systems, respectively. If $e_j = e_j(t_1, t_2, t_3)$ and $u = u(t_1, t_2, t_3)$, then a 3-parameter motion B_3 of R with respect to R' is defined, where $u = \overrightarrow{O'O}$ and t_1, t_2, t_3 are the real parameters. For the rotation part of B_3, we have the anti-symmetric system of differentiation equations (Ableitungsgleichungen)

$$de_i = e_k \omega_j - e_j \omega_k, \quad i, j, k = 1, 2, 3 \text{ (cyclic)}$$

with the conditions of integration (Integrierbarkeitsbedingungen)

$$d \omega_i = \omega_j \wedge \omega_k,$$

where “d” is the exterior derivative and “\wedge” is the wedge product of the differential forms. For the translation part of B_3

$$d \overrightarrow{O'O} = \sigma = \sigma_1 e_1 + \sigma_2 e_2 + \sigma_3 e_3,$$

where the conditions of integration are

$$d \sigma_i = \sigma_j \wedge \omega_k - \sigma_k \wedge \omega_j.$$

During B_3, ω_i and σ_i are the linear differential forms with respect to t_1, t_2, t_3. We assume that $\omega_i, i = 1, 2, 3$ are linear independent, i.e., $\omega_1 \wedge \omega_2 \wedge \omega_3 \neq 0$.

Received April 05, 2006.

2000 Mathematics Subject Classification. Primary 53A17.

Key words and phrases. homothetic motion, Holditch theorem, volume of trajectory surface.

The author thanks TÜBİTAK-BAYG for their financial supports during his doctorate studies.
2. The volume of the trajectory surface under the homothetic motions

I. Now, let us consider the 3-parametric homothetic motion of the fixed point $X = (x_i)$ with respect to arbitrary moving Euclidean space. We may write

$$x' = u + hx,$$

where x and x' are the position vectors of the point X with respect to the moving and fixed coordinate systems, respectively, and $h = h(t_1, t_2, t_3)$ is the homothetic scale of the motion. Then, we get

$$dx' = \sigma + xdh + hx \times \omega,$$

where $\omega = \sum \omega_i e_i$ is the rotation vector and “×” denotes the vector product.

If we write $dx' = \sum \tau_i e_i$, we get

$$\tau_i = \sigma_i + x_i dh + h(x_j \omega_k - x_k \omega_j). \quad (1)$$

The volume element of the trajectory surface of X is

$$dJ_X = \tau_1 \wedge \tau_2 \wedge \tau_3. \quad (2)$$

Thus, the integration of the volume element over the region G of the parameter space yields the volume of the trajectory surface, i.e., $J_X = \int_G dJ_X$. Let Γ be the closed and orientated edge surface of G.

If we replace (1) in (2), for the volume of the trajectory surface of X we get

$$J_X = J_O + \sum_{i=1}^3 \tilde{A}_i x_i^2 + \sum_{i\neq j} A_{ij} x_i x_j + \sum_{i=1}^3 B_i x_i + \left(\sum_{i=1}^3 x_i^2\right) \left(\sum_{i=1}^3 C_i x_i\right), \quad (3)$$

where

$$\tilde{A}_i = \int_G (h^2 \sigma_i \wedge \omega_j \wedge \omega_k + hdh \wedge \sigma_j \wedge \omega_j + hdh \wedge \sigma_k \wedge \omega_k),$$

$$A_{ij} = \int_G (hdh \wedge \omega_i \wedge \sigma_j + hdh \wedge \omega_j \wedge \sigma_i + h^2 \sigma_j \wedge \omega_j \wedge \omega_k + h^2 \sigma_i \wedge \omega_k \wedge \omega_i),$$

$$B_i = \int_G (h\sigma_i \wedge \sigma_k \wedge \omega_k + dh \wedge \sigma_j \wedge \sigma_k + h\sigma_i \wedge \sigma_j \wedge \omega_j) = \int_{\Gamma} h\sigma_j \wedge \sigma_k,$$

$$C_i = \int_G h^2 dh \wedge \omega_j \wedge \omega_k = \frac{1}{3} \int_{\Gamma} h^3 \omega_j \wedge \omega_k$$

and $J_O = \int_G \sigma_1 \wedge \sigma_2 \wedge \sigma_3$ is the volume of the trajectory surface of the origin point O.
Let us suppose that $\sigma_i \wedge \omega_i$, $i = 1, 2, 3$, have the same sign when integrated over any consistently orientated simplex from Γ. Then, using the mean-value theorem for double integrals, we obtain

$$
\int_\Gamma h^2 \sigma_i \wedge \omega_i = h^2(u_i, v_i) \int_\Gamma \sigma_i \wedge \omega_i, \quad i = 1, 2, 3,
$$

where u_i and v_i are the parameters. If we assume that $h^2(u_1, v_1) = h^2(u_2, v_2) = h^2(u_3, v_3)$, then using (4) and (5) we can find the parameters u_0 and v_0 such that

$$
J_X = J_O + h^2(u_0, v_0) \sum_{i=1}^3 A_i x_i^2 + \sum_{i \neq j} A_{ij} x_i x_j + \sum_{i=1}^3 B_i x_i
$$

(6)

$$
+ \left(\sum_{i=1}^3 x_i^2 \right) \left(\sum_{i=1}^3 C_i x_i \right),
$$

where

$$
A_i = \frac{1}{2} \int_\Gamma (\sigma_j \wedge \omega_j + \sigma_k \wedge \omega_k).
$$

Now, let us consider the plane $P : C_1 x + C_2 y + C_3 z = 0$. The volumes of the trajectory surfaces of points on P are quadratic polynomial with respect to x_i. If we choose the moving coordinate system such that the coefficients of the mixture quadratic terms vanish, i.e. $A_{ij} = 0$, then we get for a point $X \in P$

$$
J_X = J_O + h^2(u_0, v_0) \sum_{i=1}^3 A_i x_i^2 + \sum_{i=1}^3 B_i x_i.
$$

(7)

Hence, we may give the following theorem:

Theorem 1. All the fixed points of P whose trajectory surfaces have equal volume during the homothetic motion lie on the same quadric.

II.

Let X and Y be two fixed points on P and Z be another point on the line segment XY, that is, $z_i = \lambda x_i + \mu y_i$, $\lambda + \mu = 1$.

Using (7), we get

$$
J_Z = \lambda^2 J_X + 2\lambda\mu J_{XY} + \mu^2 J_Y,
$$

(8)

where

$$
J_{XY} = J_{YX} = J_O + h^2(u_0, v_0) \sum_{i=1}^3 A_i y_i x_i + \frac{1}{2} \sum_{i=1}^3 B_i (x_i + y_i) + \left(\sum_{i=1}^3 x_i^2 \right) \left(\sum_{i=1}^3 C_i y_i \right).
$$
is called the mixture trajectory surface volume. It is clearly seen that $J_{XX} = J_X$.
Since
\begin{equation}
J_X - 2J_{XY} + J_Y = h^2(u_0, v_0) \sum_{i=1}^{3} A_i(x_i - y_i)^2,
\end{equation}
we can rewrite (8) as follows:
\begin{equation}
J_Z = \lambda J_X + \mu J_Y - \varepsilon h^2(u_0, v_0) \lambda \mu \sum_{i=1}^{3} A_i(x_i - y_i)^2.
\end{equation}

We will define the distance $D(X, Y)$ between the points X, Y of P by
\begin{equation}
D^2(X, Y) = \sum_{i=1}^{3} A_i(x_i - y_i)^2, \quad \varepsilon = \pm 1, \quad [4].
\end{equation}
By the orientation of the line XY we will distinguish $D(X, Y) = -D(Y, X)$. Therefore, from (10) we have
\begin{equation}
J_Z = \lambda J_X + \mu J_Y - \varepsilon h^2(u_0, v_0) \lambda \mu D^2(X, Y).
\end{equation}
Since X, Y and Z are collinear, we may write
\[D(X, Z) + D(Z, Y) = D(X, Y).\]
Thus, if we denote
\[\lambda = \frac{D(Z, Y)}{D(X, Y)}, \quad \mu = \frac{D(X, Z)}{D(X, Y)},\]
from (12) we get
\begin{equation}
J_Z = \frac{1}{D(X, Y)} [D(Z, Y)J_X + D(X, Z)J_Y]
- \varepsilon h^2(u_0, v_0)D(X, Z)D(Z, Y).
\end{equation}
Now, we consider that the points X and Y trace the same trajectory surface. In this case, we get $J_X = J_Y$. Then, from (13) we obtain
\begin{equation}
J_X - J_Z = \varepsilon h^2(u_0, v_0)D(X, Z)D(Z, Y)
\end{equation}
which is the generalization of Holditch’s result, [2], for trajectory surfaces during the homothetic motions. (14) is also equivalent to the result given by [6]. We may give the following theorem:

Theorem 2. Let XY be a line segment with the constant length on P and the endpoints of this line segment have the same trajectory surface. Then, the point Z on this line segment traces another trajectory surface. The volume between these trajectory surfaces depends on the distances (in the sense of (11)) of Z from the endpoints and the homothetic scale h.

Special case: In the case of $h \equiv 1$, we have the result given by H. R. Müller, [3].
After eliminating the mixture trajectory surface volumes by using (9), we get

\[J = \lambda_1 x_i + \lambda_2 y_i + \lambda_3 z_i, \quad \lambda_1 + \lambda_2 + \lambda_3 = 1. \]

Let \(P \) and \(Q \) be another point on \(P \) (Fig. 1). Then, we may write

\[q_i = \lambda_1 x_i + \lambda_2 y_i + \lambda_3 z_i, \quad \lambda_1 + \lambda_2 + \lambda_3 = 1. \]

If we use (7), we obtain

\[J_Q = \lambda_1^2 J_{X_1} + \lambda_2^2 J_{X_2} + \lambda_3^2 J_{X_3} + 2\lambda_1\lambda_2 J_{X_1X_2} + 2\lambda_1\lambda_3 J_{X_1X_3} + 2\lambda_2\lambda_3 J_{X_2X_3}. \]

After eliminating the mixture trajectory surface volumes by using (9), we get

\[J_Q = \lambda_1 J_{X_1} + \lambda_2 J_{X_2} + \lambda_3 J_{X_3} - h^2(u_0, v_0) \tag{15} \]

\[\{ \varepsilon_{ij} \lambda_1 \lambda_2 h^2(X_1, X_2) + \varepsilon_{ik} \lambda_1 \lambda_3 h^2(X_1, X_3) + \varepsilon_{kj} \lambda_2 \lambda_3 h^2(X_2, X_3) \}. \]

On the other hand, if we consider the point \(Q_1 = (a_i) \), we may write

\[a_i = \mu_1 x_i + \mu_2 y_i, \quad q_i = \mu_3 x_i + \mu_4 a_i, \quad \mu_1 + \mu_2 = \mu_3 + \mu_4 = 1. \]

Thus, we have \(\lambda_1 = \mu_3, \ \lambda_2 = \mu_1 \mu_4, \ \lambda_3 = \mu_2 \mu_4 \) i.e.

\[\lambda_1 = \frac{D(Q, Q_1)}{D(X_1, Q_1)}, \quad \lambda_2 = \frac{D(X_1, Q)D(Q_1, X_3)}{D(X_1, Q_1)D(X_2, X_3)}, \quad \lambda_3 = \frac{D(X_1, Q)D(X_2, Q_1)}{D(X_1, Q_1)D(X_2, X_3)}. \]

Similarly, considering the points \(Q_2 \) and \(Q_3 \), respectively, we find

\[\lambda_i = \frac{D(Q, Q_i)}{D(X, Q_i)}, \quad \lambda_i = \frac{D(X, Q)D(Q_k, X_j)}{D(X, Q_i)D(X, X_j)} \]

\[= \frac{D(X, Q)D(Q_k, X_j)}{D(X, Q_k)D(X, X_j)}, \quad i, j, k = 1, 2, 3 \ (cyclic). \]

Then, from (15) the generalization of (12) is found as

\[J_Q = \sum_i \frac{D(Q, Q_i)}{D(X, Q_i)} J_{X_i} - h^2(u_0, v_0) \sum \varepsilon_{ij} \left(\frac{D(X, Q)}{D(X, Q_k)} \right)^2 D(Q_k, X_j)D(X_i, Q_k). \]

If \(X_1, X_2, X_3 \) trace the same trajectory surface, then the difference between the volumes is

\[J_{X_1} - J_Q = h^2(u_0, v_0) \sum \varepsilon_{ij} \left(\frac{D(X, Q)}{D(X, Q_k)} \right)^2 D(Q_k, X_j)D(X_i, Q_k). \]
Then, we can give the following theorem:

Theorem 3. Let us consider a triangle on the plane P. If the vertices of this triangle trace the same trajectory surface, then a different point on P traces another surface. The volume between these trajectory surfaces depends on the distances (in the sense of (11)) of the moving triangle and the homothetic scale h.

Acknowledgment. The authors are very grateful to the referee for the helpful comments and valuable suggestions.

References

M. Düldül, Sinop University, Science and Arts Faculty, Department of Mathematics, 57000, Sinop, Turkey, e-mail: mduldul@omu.edu.tr

N. Kuruoğlu, Bahçeşehir University, Science and Arts Faculty, Department of Mathematics and Computer Sciences, Bahçeşehir 34538, Istanbul, Turkey, e-mail: kuruoglu@bahcesehir.edu.tr