NOTE ON THE Ψ-BOUNDEDNESS OF THE SOLUTIONS OF A SYSTEM OF DIFFERENTIAL EQUATIONS

A. DIAMANDESCU

Abstract. It is proved a necessary and sufficient condition for the existence of Ψ-bounded solutions of a linear nonhomogeneous system of ordinary differential equations.

1. Introduction

The purpose of this note is to give a necessary and sufficient condition so that the nonhomogeneous system

\[x' = A(t)x + f(t) \]

have at least one Ψ-bounded solution for every continuous and Ψ-bounded function \(f \), in supplementary hypothesis that \(A(t) \) is a Ψ-bounded matrix on \(\mathbb{R}_+ \).

Here, Ψ is a continuous matrix function. The introduction of the matrix function Ψ permits to obtain a mixed asymptotic behavior of the components of the solutions.

The problem of Ψ-boundedness of the solutions for systems of ordinary differential equations has been studied by many authors, as e.g. O. Akinyele [1], A. Constantin [3], C. Avramescu [2], T. Hallam [8], J. Morchalo [10]. In these papers, the function Ψ is a scalar continuous function (and increasing, differentiable and bounded in \([1] \), nondecreasing and such that \(\Psi(t) \geq 1 \) on \(\mathbb{R}_+ \) in \([3] \)).

Let \(\mathbb{R}^d \) be the Euclidean \(d \)-space. For \(x = (x_1, x_2, \ldots, x_d)^T \in \mathbb{R}^d \), let \(\|x\| = \max \{|x_1|, |x_2|, \ldots, |x_d|\} \) be the norm of \(x \). For a \(d \times d \) real matrix \(A \), we define the norm \(|A| \) by \(|A| = \sup_{\|x\| \leq 1} \|Ax\| \). Let \(\Psi_i : \mathbb{R}_+ \to (0, \infty), \ i = 1, 2, \ldots, d \), be continuous functions and

\[\Psi = \text{diag} [\Psi_1, \Psi_2, \ldots, \Psi_d] . \]

Definition 1.1. A function \(\phi : \mathbb{R}_+ \to \mathbb{R}^d \) is said to be Ψ-bounded on \(\mathbb{R}_+ \) if \(\Psi(t)\phi(t) \) is bounded on \(\mathbb{R}_+ \).

Let \(A \) be a continuous \(d \times d \) real matrix and the associated linear differential system

\[y' = A(t)y \]
Let Y be the fundamental matrix of (2) for which $Y(0) = I_d$ (identity $d \times d$ matrix).

Let X_1 denote the subspace of \mathbb{R}^d consisting of all vectors which are values of Ψ-bounded solutions of (2) for $t = 0$ and let X_2 an arbitrary fixed subspace of \mathbb{R}^d, supplementary to X_1.

We suppose that X_2 is a closed subspace of \mathbb{R}^d. We denote by P_1 the projection of \mathbb{R}^d onto X_1 (that is P_1 is a bounded linear operator $P_1 : \mathbb{R}^d \to \mathbb{R}^d$, $P_1^2 = P_1$, $\text{Ker} P_1 = X_2$) and $P_2 = I - P_1$ the projection onto X_2.

In our papers [5] and [6] we have proved the following results (Lemma 1, Lemma 2 and respectively Theorem 2.1):

Lemma 1. Let $Y(t)$ be an invertible matrix which is a continuous function of t on \mathbb{R}_+ and let P be a projection.

If there exist a continuous function $\varphi : \mathbb{R}_+ \to (0, \infty)$ and a positive constant M such that
\[
\int_0^t \varphi(s) |\Psi(t) P Y^{-1}(s) \Psi^{-1}(s)| \, ds \leq M, \quad \text{for all } t \geq 0,
\]
and
\[
\int_0^\infty \varphi(s) \, ds = +\infty,
\]
then, there exists a constant $N > 0$ such that
\[
|\Psi(t) Y(t) P| \leq Ne^{-M \int_0^t \varphi(s) \, ds}, \quad \text{for all } t \geq 0.
\]
Consequently,
\[
\lim_{t \to \infty} |\Psi(t) Y(t) P| = 0.
\]

Lemma 2. Let $Y(t)$ be an invertible matrix which is a continuous function of t on \mathbb{R}_+ and let P be a projection.

If there exists a constant $M > 0$ such that
\[
\int_t^\infty |\Psi(t) Y(t) P Y^{-1}(s) \Psi^{-1}(s)| \, ds \leq M, \quad \text{for all } t \geq 0,
\]
then, for any vector $x_0 \in \mathbb{R}^d$ such that $Px_0 \neq 0$,
\[
\limsup_{t \to \infty} \|\Psi(t) Y(t) Px_0\| = +\infty.
\]

Theorem 2.1. If A is a continuous $d \times d$ matrix, then the system (1) has at least one Ψ-bounded solution on \mathbb{R}_+ for every continuous and Ψ-bounded function f on
\(\mathbb{R}_+ \) if and only if there is a positive constant \(K \) such that

\[
\int_0^t |\Psi(t)Y(t)P_1Y^{-1}(s)\Psi^{-1}(s)| \, ds + \int_t^\infty |\Psi(t)Y(t)P_2Y^{-1}(s)\Psi^{-1}(s)| \, ds \leq K,
\]

for all \(t \geq 0 \).

2. The main results

In this section we give the main results of this note.

Theorem 2.1. Let \(A \) be a continuous \(d \times d \) real matrix such that

\[
|\Psi(t)A(t)\Psi^{-1}(t)| \leq L, \quad \text{for all } t \geq 0.
\]

Let \(\Psi(t) \) such that

\[
|\Psi(t)\Psi^{-1}(s)| \leq M, \quad \text{for } t \geq s \geq 0.
\]

Then, the system (1) has at least one \(\Psi \)-bounded solution on \(\mathbb{R}_+ \) for every continuous and \(\Psi \)-bounded function \(f \) on \(\mathbb{R}_+ \) if and only if there are two positive constants \(K_1 \) and \(\alpha \) such that

\[
|\Psi(t)Y(t)P_1Y^{-1}(s)\Psi^{-1}(s)| \leq K_1 e^{-\alpha(t-s)}, \quad 0 \leq s \leq t,
\]

\[
|\Psi(t)Y(t)P_2Y^{-1}(s)\Psi^{-1}(s)| \leq K_1 e^{-\alpha(s-t)}, \quad 0 \leq t \leq s,
\]

Proof. First, we prove the "only if" part.

From the hypotheses and Theorem 2.1, [6], it follows that there is a positive constant \(K \) such that

\[
\int_0^t |\Psi(t)Y(t)P_1Y^{-1}(s)\Psi^{-1}(s)| \, ds + \int_t^\infty |\Psi(t)Y(t)P_2Y^{-1}(s)\Psi^{-1}(s)| \, ds \leq K,
\]

for all \(t \geq 0 \).

From \(Y'(t) = A(t)Y(t), \ t \geq 0 \), it follows that

\[
Y(t) = Y(s) + \int_s^t A(u)Y(u) \, du, \quad \text{for } t \geq s \geq 0.
\]

Therefore,

\[
\Psi(t)Y(t)Y^{-1}(s)\Psi^{-1}(s) = \Psi(t)\Psi^{-1}(s) + \int_s^t \Psi(t)A(u)Y(u)Y^{-1}(s)\Psi^{-1}(s) \, du.
\]
Thereafter, for \(t \geq s \geq 0, \)

\[
|\Psi(t)Y(t)Y^{-1}(s)\Psi^{-1}(s)|
\]

\[
\leq |\Psi(t)\Psi^{-1}(s)| + \int_{s}^{t} |\Psi(t)\Psi^{-1}(u)\|\Psi(u)A(u)\Psi^{-1}(u)\|\Psi(u)Y(u)Y^{-1}(s)\Psi^{-1}(s)|\,du.
\]

From the hypotheses and Gronwall’s inequality it follows that

\[
(5) \quad |\Psi(t)Y(t)Y^{-1}(s)\Psi^{-1}(s)| \leq Me^{LM(t-s)}, \quad t \geq s \geq 0.
\]

Now, we show that (3) and (5) imply (4).

For \(v \in \mathbb{R}^{d} \) and \(0 \leq s \leq t \leq s + 1, \) we have

\[
\|\Psi(t)Y(t)P_1 v\| = \|\Psi(t)Y(t)Y^{-1}(s)\Psi^{-1}(s)\Psi(s)Y(s)P_1 v\|
\]

\[
\leq |\Psi(t)Y(t)Y^{-1}(s)\Psi^{-1}(s)| \cdot \|\Psi(s)Y(s)P_1 v\|
\]

\[
\leq Me^{LM}\|\Psi(s)Y(s)P_1 v\|
\]

For \(P_1 v \neq 0, \) let

\[
q(t) = \|\Psi(t)Y(t)P_1 v\|^{-1} \quad \text{and} \quad Q(t) = \int_{0}^{t} q(s)\,ds.
\]

We have

\[
q(t) \geq M^{-1}e^{-LM}q(s), \quad \text{for } 0 \leq s \leq t \leq s + 1.
\]

Thus,

\[
Q(s+1) = \int_{0}^{s+1} q(u)\,du \geq \int_{s}^{s+1} q(u)\,du \geq M^{-1}e^{-LM}q(s).
\]

From Lemma 1, [5], it follows that

\[
\|\Psi(t)Y(t)P_1 v\| \leq KQ^{-1}(s+1)e^{-K^{-1}(t-s-1)}, \quad \text{for } t \geq s + 1
\]

and hence

\[
(7) \quad \|\Psi(t)Y(t)P_1 v\| \leq KMe^{LM}q^{-1}(s)e^{-K^{-1}(t-s-1)}
\]

\[
= KMe^{LM}e^{-K^{-1}(t-s-1)}\|\Psi(s)Y(s)P_1 v\|, \quad \text{for } t \geq s + 1.
\]

From (6) and (7) it results that

\[
(8) \quad \|\Psi(t)Y(t)P_1 v\| \leq N_1 e^{-K^{-1}(t-s)}\|\Psi(s)Y(s)P_1 v\|,
\]

for \(t \geq s \) and \(v \in \mathbb{R}^{d}, \) where \(N_1 = Me^{LM+K^{-1}} \max\{1, K\}. \)

Similarly, for \(P_2 v \neq 0, \) let

\[
r(t) = \|\Psi(t)Y(t)P_2 v\|^{-1}.
\]
From (3) and Lemma 2, [5], it follows that the function \(R(t) = \int_t^\infty r(u) \, du \) exists for \(t \geq 0 \) and

\[
(9) \quad r^{-1}(t) \int_t^T r(u) \, du \leq K, \quad \text{for } T \geq t \geq 0.
\]

Hence,

\[
R'(t) = -r(t) \leq -K^{-1} R(t)
\]

and then,

\[
(10) \quad R(t) \leq R(t_0)e^{-K^{-1}(t-t_0)}, \quad t \geq t_0 \geq 0.
\]

On the other hand, for \(t \geq s \geq 0 \), we have

\[
r^{-1}(t) = \| \Psi(t)Y(t)P_2v \| = \| \Psi(t)Y(t)Y^{-1}(s)\Psi^{-1}(s)\Psi(s)Y(s)P_2v \|
\leq |\Psi(t)Y(t)Y^{-1}(s)\Psi^{-1}(s)| \cdot \| \Psi(s)Y(s)P_2v \|
\leq Me^{LM(t-s)}r^{-1}(s).
\]

Consequently,

\[
r(s) \geq M^{-1}e^{-LM(s-t)}r(t), \quad s \geq t \geq 0.
\]

Hence,

\[
R(t) \geq M^{-1}r(t) \int_t^\infty e^{-LM(s-t)} \, ds = L^{-1}M^{-2}r(t).
\]

Combining this with \((9)\) and \((10)\), we obtain, for \(t \geq t_0 \geq 0 \):

\[
\| \Psi(t)Y(t)P_2v \| = r^{-1}(t) \geq L^{-1}M^{-2}R^{-1}(t)
\geq L^{-1}M^{-2}R^{-1}(t_0)e^{K^{-1}(t-t_0)}
= (LM^2)^{-1}e^{K^{-1}(t-t_0)}\| \Psi(t_0)Y(t_0)P_2v \|.
\]

It results that

\[
(11) \quad \| \Psi(t)Y(t)P_2v \| \leq N_2e^{-K^{-1}(s-t)}\| \Psi(s)Y(s)P_2v \|,
\]

for \(s \geq t \geq 0, \ v \in \mathbb{R}^d \), where \(N_2 = LM^2 \).

Now, we show that

\[
p_i(t) = |\Psi(t)Y(t)P_iY^{-1}(t)\Psi^{-1}(t)|, \quad i = 1, 2,
\]

are bounded for \(t \geq 0 \). Let \(\sigma > 0 \) be such that

\[
p = N_2^{-1}e^{K^{-1}\sigma} - N_1e^{-K^{-1}\sigma} > 0.
\]

From \((8)\) and \((11)\) we deduce that

\[
|\Psi(t+\sigma)Y(t+\sigma)P_1Y^{-1}(t)\Psi^{-1}(t)| \leq N_1e^{-K^{-1}\sigma}p_1(t),
\]

\[
|\Psi(t+\sigma)Y(t+\sigma)P_2Y^{-1}(t)\Psi^{-1}(t)| \geq N_2^{-1}e^{K^{-1}\sigma}p_2(t).
\]
Hence,
\[|p_1^{-1}(t)\Psi(t + \sigma)Y(t + \sigma)P_1Y^{-1}(t)\Psi^{-1}(t)| + p_2^{-1}(t)\Psi(t + \sigma)Y(t + \sigma)P_2Y^{-1}(t)\Psi^{-1}(t)| \geq p.\]

It follows that
\[|\Psi(t + \sigma)Y(t + \sigma)Y^{-1}(t)\Psi^{-1}(t)(p_1^{-1}(t)\Psi(t)Y(t)P_1Y^{-1}(t)\Psi^{-1}(t)| + p_2^{-1}(t)\Psi(t)Y(t)P_2Y^{-1}(t)\Psi^{-1}(t)| \geq p,\]

or
\[p \leq |p_1^{-1}(t)\Psi(t)Y(t)P_1Y^{-1}(t)\Psi^{-1}(t)| + p_2^{-1}(t)\Psi(t)Y(t)P_2Y^{-1}(t)\Psi^{-1}(t)|Me^{LM\sigma}.\]

Therefore,
\[pM^{-1}e^{-LM\sigma} \leq |p_1^{-1}(t)I_d + (p_2^{-1}(t) - p_1^{-1}(t))\Psi(t)Y(t)P_2Y^{-1}(t)\Psi^{-1}(t)| \leq p_1^{-1}(t) + |p_2^{-1}(t) - p_1^{-1}(t)|p_2(t) = p_1^{-1}(t)(1 + |p_1(t) - p_2(t)|)
\]
\[= p_1^{-1}(t)(1 + \|\Psi(t)Y(t)P_1Y^{-1}(t)\Psi^{-1}(t)| - |\Psi(t)Y(t)P_2Y^{-1}(t)\Psi^{-1}(t)|)
\]
\[\leq p_1^{-1}(t)(1 + |\Psi(t)Y(t)P_1Y^{-1}(t)\Psi^{-1}(t) + \Psi(t)Y(t)P_2Y^{-1}(t)\Psi^{-1}(t)|)
\]
\[= 2p_1^{-1}(t).\]

It follows that
\[(12)\quad p_1(t) \leq 2Mp^{-1}e^{LM\sigma} = \overline{M}, \quad t \geq 0.\]

Similarly,
\[(13)\quad p_2(t) \leq \overline{M}, \quad t \geq 0.\]

Finally, by (8), (11), (12) and (13) we deduce that
\[|\Psi(t)Y(t)P_1Y^{-1}(s)\Psi^{-1}(s)| \leq K_1e^{-K^{-1}(t-s)}, \quad 0 \leq s \leq t\]
\[|\Psi(t)Y(t)P_2Y^{-1}(s)\Psi^{-1}(s)| \leq K_1e^{-K^{-1}(s-t)}, \quad 0 \leq t \leq s,\]

where \(K_1 = \overline{M}\max\{N_1, N_2\}\).

Now, we prove the "if" part.

From (4), for \(t \geq 0\) we have
\[\int_0^t |\Psi(t)Y(t)P_1Y^{-1}(s)\Psi^{-1}(s)| ds + \int_t^\infty |\Psi(t)Y(t)P_2Y^{-1}(s)\Psi^{-1}(s)| ds \leq K_1 \int_0^s e^{-\alpha(t-s)} ds + K_1 \int_t^\infty e^{-\alpha(s-t)} ds < \frac{2K_1}{\alpha}.\]

From this and Theorem 2.1, [6], it follows the conclusion of theorem. The proof is now complete. \(\square\)
Remark 2.1. If $\Psi(t)$ and fundamental matrix $Y(t)$ do not fulfil the condition (5), then the conditions (4) may not be true.

This is shown by the

Example 2.1. Consider the linear system (2) with $A(t) = \begin{pmatrix} -2 & e^t \\ 0 & 2 \end{pmatrix}$.

A fundamental matrix for the system (2) is

$$Y(t) = \begin{pmatrix} e^{-2t} & \frac{1}{2}(e^{3t} - e^{-2t}) \\ 0 & e^{2t} \end{pmatrix}.$$

Consider

$$\Psi(t) = \begin{pmatrix} e^{-t} & 0 \\ 0 & e^{-2t} \end{pmatrix}.$$

We have

$$\Psi(t)Y(t)Y^{-1}(s)\Psi^{-1}(s) = \begin{pmatrix} e^{-3(t-s)} & \frac{1}{5}e^{2t}(1 - e^{-5(s-t)}) \\ 0 & 1 \end{pmatrix}.$$

This shows that (5) is not satisfied.

Instead,

$$\Psi(t)\Psi^{-1}(s) = \begin{pmatrix} e^{-(t-s)} & 0 \\ 0 & e^{-2(t-s)} \end{pmatrix},$$

is bounded for $0 \leq s \leq t$.

But then, in this case, we have

$$P_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad P_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

Thereafter,

$$\Psi(t)Y(t)P_1Y^{-1}(s)\Psi^{-1}(s) = \begin{pmatrix} e^{-3(t-s)} & \frac{1}{5}e^{-3t}(1 - e^{5s}) \\ 0 & 0 \end{pmatrix},$$

which is unbounded for $0 \leq s \leq t$.

Thus, the conditions (4) is not true.

Remark 2.2. If in Theorem 2.1 we put $\Psi(t) = I_d$, then the conclusion of the Theorem 3, Chapter V, [4], follows.

We prove finally a theorem in which we will see that the asymptotic behavior of solutions of (1) is determined completely by the asymptotic behavior of $f(t)$ as $t \to \infty$.

Theorem 2.2. Suppose that:

1. the fundamental matrix $Y(t)$ of (2) satisfies the conditions

$$|\Psi(t)Y(t)P_1Y^{-1}(s)\Psi^{-1}(s)| \leq K e^{-\alpha(t-s)}, \quad 0 \leq s \leq t,$$

$$|\Psi(t)Y(t)P_2Y^{-1}(s)\Psi^{-1}(s)| \leq K e^{-\alpha(s-t)}, \quad 0 \leq t \leq s,$$

where K and α are positive constants and P_1, P_2 are supplementary projections, $P_1 \neq 0$;
2. the continuous and Ψ-bounded function $f : \mathbb{R}_+ \to \mathbb{R}^d$ satisfies one of the following conditions:
 a) $\lim_{t \to \infty} \|\Psi(t)f(t)\| = 0$,
 b) $\int_{0}^{t} \|\Psi(t)f(t)\| \, dt$ is convergent,
 c) $\lim_{t \to \infty} \int_{t}^{t+1} \|\Psi(s)f(s)\| \, ds = 0$.

Then, every Ψ-bounded solution $x(t)$ of (1) is such that
 $$\lim_{t \to \infty} \|\Psi(t)x(t)\| = 0.$$

Proof. a) It follows from the Theorem 2.1, [6].
 b) It is similar to the proof of Theorem 2.1, [6].
 c) By the hypothesis 2, it follows that there exists a positive constant C such that
 $$\int_{t}^{t+1} \|\Psi(s)f(s)\| \, ds \leq C, \quad \text{for all } t \geq 0.$$

Let $x(t)$ be a Ψ-bounded solution of (1). There is a positive constant M such that $\|\Psi(t)x(t)\| \leq M$, for all $t \geq 0$.

Consider the function
 $$y(t) = x(t) - Y(t)P_1x(0) - \int_{0}^{t} Y(t)P_1Y^{-1}(s)f(s) \, ds + \int_{t}^{\infty} Y(t)P_2Y^{-1}(s)f(s) \, ds,$$
 for all $t \geq 0$.

For $v \geq t \geq 0$ we have
 $$\int_{t}^{v} P_2Y^{-1}(s)f(s) \, ds \leq \int_{t}^{v} \|P_2Y^{-1}(s)f(s)\| \, ds$$
 $$\leq |Y^{-1}(t)\Psi^{-1}(t)| \int_{t}^{v} \|\Psi(t)Y(t)P_2Y^{-1}(s)\Psi^{-1}(s)\| \cdot \|\Psi(s)f(s)\| \, ds$$
 $$\leq K|Y^{-1}(t)\Psi^{-1}(t)| \int_{t}^{v} e^{-\alpha(s-t)} \|\Psi(s)f(s)\| \, ds$$
 $$\leq KC(1-e^{-\alpha})^{-1}|Y^{-1}(t)\Psi^{-1}(t)|,$$

by using a Lemma of J. L. Massera and J. J. Schäffer, [9].

It follows that the integral
 $$\int_{t}^{\infty} Y(t)P_2Y^{-1}(s)f(s) \, ds$$
 is convergent.
Clearly, the function $y(t)$ is continuously differentiable on \mathbb{R}_+. For $t \geq 0$, we have

$$y'(t) = x'(t) - Y'(t)P_1x(0) - Y'(t) \int_0^t P_1Y^{-1}(s)f(s)\,ds - Y(t)P_1Y^{-1}(t)f(t)$$

$$+ Y'(t) \int_t^\infty P_2Y^{-1}(s)f(s)\,ds - Y(t)P_2Y^{-1}(t)f(t)$$

$$= A(t)x(t) + f(t) - A(t)Y(t)P_1x(0) - A(t)Y(t) \int_0^t P_1Y^{-1}(s)f(s)\,ds$$

$$+ A(t)Y(t) \int_t^\infty P_2Y^{-1}(s)f(s)\,ds - Y(t)(P_1 + P_2)Y^{-1}(t)f(t)$$

$$= A(t)y(t).$$

Thus, the function $y(t)$ is a solution of the linear system (2).

Since the hypothesis 1. implies that $\lim_{t \to \infty} \Psi(t)Y(t)P_1 = 0$ (see Lemma 1, [5]), there exists a positive constant N such that $|\Psi(t)Y(t)P_1| \leq N$ for all $t \geq 0$.

It follows that

$$\|\Psi(t)y(t)\| \leq \|\Psi(t)x(t)\| + |\Psi(t)Y(t)P_1| \cdot \|x(0)\|$$

$$+ \int_0^t |\Psi(t)Y(t)P_1Y^{-1}(s)\Psi^{-1}(s)| \cdot \|\Psi(s)f(s)\|\,ds$$

$$+ \int_t^\infty |\Psi(t)Y(t)P_2Y^{-1}(s)\Psi^{-1}(s)|\|\Psi(s)f(s)\|\,ds$$

$$\leq M + N\|x(0)\| + K \int_0^t e^{-\alpha(t-s)}\|\Psi(s)f(s)\|\,ds$$

$$+ K \int_t^\infty e^{-\alpha(s-t)}\|\Psi(s)f(s)\|\,ds$$

$$\leq M + N\|x(0)\| + 2KC(1 - e^{-\alpha})^{-1},$$

for all $t \geq 0$,

by using of above Lemma of Massera and Schäffer.

Thus, the function $y(t)$ is a Ψ-bounded solution of the linear system (2).

On the other hand, $P_1y(0) = 0$. Therefore, $y(t) = Y(t)g(0) = Y(t)P_2y(0)$. If $P_2y(0) \neq 0$, from the Lemma 2, [5], it follows that $\lim_{t \to \infty} \|\Psi(t)y(t)\| = +\infty$, which is contradictory. Thus, $P_2y(0) = 0$ and then $y(t) = 0$ for $t \geq 0$.

\[\text{Note on the } \Psi\text{-boundedness of the solutions} \]
Thus, for \(t \geq 0 \) we have
\[
x(t) = Y(t)P_1 x(0) + \int_0^t Y(t)P_1 Y^{-1}(s)f(s) \, ds - \int_t^\infty Y(t)P_2 Y^{-1}(s)f(s) \, ds.
\]

Now, for a given \(\varepsilon > 0 \), there exists \(t_1 \geq 0 \) such that
\[
\int_0^{t+1} \| \Psi(s)f(s) \| \, ds < \varepsilon (4K)^{-1}(1 - e^{-\alpha}), \quad \text{for all } t \geq t_1.
\]

Moreover, there exists \(t_2 > t_1 \) such that, for \(t \geq t_2 \),
\[
\| \Psi(t)Y(t)P_1 \| \leq \frac{\varepsilon}{2} \left(\| x(0) \| + \int_0^{t_1} \| Y^{-1}(s)f(s) \| \, ds \right)^{-1}.
\]

Then, for \(t \geq t_2 \) we have, by using of above Lemma of Massera and Schäffer,
\[
\| \Psi(t)x(t) \| \leq \| \Psi(t)Y(t)P_1 \| \| x(0) \| + \int_0^{t_1} \| \Psi(t)Y(t)P_2 Y^{-1}(s)\Psi^{-1}(s)f(s) \| \, ds
\]
\[
+ \int_0^{t} \| \Psi(t)Y(t)P_1 Y^{-1}(s)\Psi^{-1}(s)f(s) \| \, ds
\]
\[
\leq \| \Psi(t)Y(t)P_1 \| \| x(0) \| + \int_0^{t_1} \| Y^{-1}(s)f(s) \| \, ds
\]
\[
+ \int_{t_1}^{t} e^{-\alpha(t-s)} \| \Psi(s)f(s) \| \, ds + K \int_t^\infty e^{-\alpha(s-t)} \| \Psi(s)f(s) \| \, ds
\]
\[
< \varepsilon.
\]

This shows that \(\lim_{t \to \infty} \| \Psi(t)x(t) \| = 0 \).

The proof is now complete. \(\square \)

Remark 2.3. If in Theorem we put \(A(t) = A, \Psi(t) = \varphi^k(t)I_d \), then the conclusion of the Theorem 3.1, [3], follows.

Remark 2.4. If the function \(f \) does not fulfill the condition 2 of the theorem, then \(\Psi(t)x(t) \) may be such that
\[
\lim_{t \to \infty} \| \Psi(t)x(t) \| \neq 0.
\]

This can be seen from
Example 2.2. Consider the linear system (1) with
\[
A(t) = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \quad \text{and} \quad f(t) = \begin{pmatrix} e^{(a+1)t} \\ e^{(b-2)t} \end{pmatrix},
\]
where \(a, b \in \mathbb{R}\).

A fundamental matrix for the homogeneous system (2) is
\[
Y(t) = \begin{pmatrix} e^{at} & 0 \\ 0 & e^{bt} \end{pmatrix}.
\]
Consider
\[
\Psi(t) = \begin{pmatrix} e^{-(a+1)t} & 0 \\ 0 & e^{(1-b)t} \end{pmatrix}.
\]
The first condition of the Theorem 2.2. is satisfied with
\[
P_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad P_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \quad \alpha = 1, \quad K = 1.
\]
Then, we have \(\|\Psi(t)f(t)\| = 1\) for all \(t \geq 0\) and
\[
\Psi(t)x(t) = \begin{pmatrix} c_1 e^{-t} + \frac{1}{2} e^{-t} \\ c_2 e^t \end{pmatrix} \to 0 \quad \text{as} \quad t \to \infty.
\]

Remark 2.5. This Example shows that the components of the solution \(x(t)\) have a mixed asymptotic behavior.

Acknowledgment. The author would like to thank very much the referee of this paper for valuable comments and suggestions.

References

A. Diamandescu, Department of Applied Mathematics, University of Craiova, 13, “Al. I. Cuza” st., 200585 Craiova, Romania., e-mail: adiamandescu@central.ucv.ro