EXISTENCE OF CONSERVATION LAWS IN NILPOTENT CASE

M. MEHDI

ABSTRACT. Using the Spencer-Goldschmidt version of the Cartan-Kähler theorem, we prove the local existence of conservation laws for analytical quasi-linear systems of two independent variables in the nilpotent and 2-cyclic case.

INTRODUCTION

A conservation law for a (1-1) tensor field h on a manifold M, $\dim M = n$, is a 1-form θ which satisfies $d\theta = 0$ and $dh^*\theta = 0$, where h^* is the transpose of h: $h^*\theta := \theta \circ h$. Conservation laws arise, for example, in the following classical problem. Consider a system of n quasi-linear equations in two independent variables:

\begin{equation}
\frac{\partial x^i}{\partial u} + h^i_j(x) \frac{\partial x^j}{\partial v} = 0 \quad (i, j = 1, \ldots, n).
\end{equation}

If $\theta := \lambda_i(x)dx^i$ is a conservation law with respect to the (1-1) tensor field h defined by the matrix h^i_j, there exist locally two functions f and g so that $\theta = df$ and $h^*\theta = dg$, (i.e. $\lambda_i = \frac{\partial f}{\partial x^i}$ and $h^i_j\lambda_i = \frac{\partial g}{\partial x^j}$), and we have

\[0 = \lambda_i \frac{\partial x^i}{\partial u} + \lambda_i h^i_j(x) \frac{\partial x^j}{\partial v} = \frac{\partial f}{\partial x^j} \frac{\partial x^j}{\partial u} + \frac{\partial g}{\partial x^j} \frac{\partial x^j}{\partial v} = 0. \]

Then for any solution $x^i(u, v)$ of the system (*), we have

\[\frac{\partial f(x(u, v))}{\partial u} + \frac{\partial g(x(u, v))}{\partial v} = 0, \]

and it contains a conservation law in the sense of Lax [10].

Locally, giving a conservation law is equivalent to giving a function f such that $(dh^*d)(f) = 0$. Thus the study of the local existence of conservation laws is equivalent (in an analytic context) to the study of the formal integrability of the differential operator dh^*d.

Received May 19, 1999; revised September 14, 1999.

1980 Mathematics Subject Classification (1991 Revision). Primary 35G20, 35N10; Secondary 58F07, 58G30.

Key words and phrases. Conservation laws, completely integrable systems, Cartan-Kähler theorem, Nijenhuis-manifolds.
This problem has already been studied by Osborn, who, using Cartan’s theory of exterior differential systems, showed the existence of conservation laws when \(h \) has constant coefficients in a suitable coordinate system \((7)\).

In a paper published in 1964, Osborn \((8)\) proved the formal Integrability of the operator \(dh^* d \) in the case when \(h \) is cyclic and if there exists a generator \(v^1 \) such that \(v^1, \ldots, h^{n-1} v^1 \) commutes in the sense of the square bracket.

Using the theory presented by Spencer and Goldschmidt \((4, 9)\), we improve in \((2)\) the case when \(h \) is cyclic, by getting rid of the supplementary condition given by Osborn. Recently, we show in \((5)\) the following theorem:

Theorem. Suppose that \(h \) is nilpotent of order \(p \), \((p \geq 2)\), analytic and such that \([h, h] = 0\). Fix \(x_0 \in M \). Then there exists a neighborhood \(U \) of \(x_0 \) such that any \(x \in U \) admits a “complete system” of conservation laws (i.e. every \(\omega_0 \in T^*_x (M) \) can be prolonged in a germ of conservation laws) if and only if \(\ker h, \ker h^2, \ldots, \ker h^{p-1} \) are involutive.

In this case the operator \(dh^* d \) is completely integrable \((5)\).

The main result of the present paper, whose essential ideas were given in \((5)\), can be expressed as following theorem:

Theorem. Suppose that \(h \) is nilpotent of order \(p \), \((p \geq 2)\), analytic, \([h, h] = 0\) and such that \(\dim (\text{Im} h^{p-1}) \geq \dim (\ker h) - 1 \). Fix \(x_0 \in M \). Then there exists a neighborhood \(U \) of \(x_0 \) such that any \(x \in U \) admits a “complete system” of conservation laws.

Corollary. Suppose that \(h \) is nilpotent of order \(p \), \((p \geq 2)\), analytic, \([h, h] = 0\) and such that \(h \) is 2 cyclic, \((1,1)\) form. Fix \(x_0 \in M \). Then there exists a neighborhood \(U \) of \(x_0 \) such that any \(x \in U \) admits a “complete system” of conservation laws.

1. **Algebraic preliminaries**

Using Frölicher-Nijenhuis formalism \((3)\), we know that for any point \(x \in M \) and for any \((1,1)\) tensor field \(h \) there exists a neighborhood \(U \) of \(x \) such that \(h \) decomposes \(TU \) as a direct sum of the cyclic subspaces \(V_i, i = 1, \ldots, s \) stable for \(h \), (i.e. the restriction of \(h \) to \(V_i \) is cyclic) \((1, 7, 8)\). Let \(q_i \) designate the dimension of \(V_i \) at \(x \) and at any point in \(U \). We suppose that \(V_i, i = 1, \ldots, s \) are arranged in such a way that \(q_1 \geq q_2 \geq \cdots \geq q_s \). In this and following section we design by \(v_i^1 \) a generator of \(V_i \) (for \(i = 1, \ldots, s \)) and denote \(v_i^{\alpha} := h^{\alpha-1} v_i^1, \alpha_i = 1, \ldots, q_i \). The vectors \(\{(v_1^{\alpha})_{\alpha_1 = 1, \ldots, q_1}, \ldots, (v_s^{\alpha})_{\alpha_s = 1, \ldots, q_s}\} \equiv \{v_i^{\alpha}\}_{i=1, \ldots, s, \alpha = 1, \ldots, q_i} \) form a basis of \(TU \) which called “adapted” to the decomposition into cyclic subspaces. By convention, we write \(v_i^\beta = 0 \) for \(\beta > q_i \).
Proposition 1.1. If h is nilpotent of order p and $r \in \{1, \ldots, p\}$, we have:

1. $\ker h^r$ is generated by $\{v_i^{\alpha+q_i-r}\}_{\alpha=1,\ldots,q_i}^{i=1,\ldots,s}$
2. $\text{Im } h^r$ is generated by $\{v_i^{\alpha+q_i}\}_{\alpha=1,\ldots,q_i}^{i=1,\ldots,s}$
3. $\dim \ker h = s$.

Proof. Conformally to the introduction of this section we can write the following table (5), which explain the relation between the elements of the set $\{v_i^{\alpha}\}_{\alpha=1,\ldots,q_i}^{i=1,\ldots,s}$. In fact:

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Cyclic Subspaces</th>
<th>Sequence Defined by h</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_1</td>
<td>V_1</td>
<td>$v_1^1 \overset{h}{\rightarrow} v_1^2 \overset{h}{\rightarrow} \ldots \overset{h}{\rightarrow} v_1^q_i \overset{h}{\rightarrow} 0$</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>q_i</td>
<td>V_i</td>
<td>$v_i^1 \overset{h}{\rightarrow} v_i^2 \overset{h}{\rightarrow} \ldots \overset{h}{\rightarrow} v_i^q_i \overset{h}{\rightarrow} 0$</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>q_s</td>
<td>V_s</td>
<td>$v_s^1 \overset{h}{\rightarrow} \ldots \overset{h}{\rightarrow} v_s^q_s \overset{h}{\rightarrow} 0$</td>
</tr>
</tbody>
</table>

We prove this proposition by simple application of this table (5).

Definition 1. We call a Nijenhuis-manifold (M, h) every C^∞ manifold M equipped with a $(1-1)$ tensor field h such that $[h, h] = 0$. $[h, h]$ being the Nijenhuis square bracket of h defined by:

$$\frac{1}{2}[h, h](X,Y) := [hX, hY] + h^2[X, Y] - h[hX, Y] - h[X, hY] \quad \forall X, Y \in TM.$$

Proposition 1.2. On the Nijenhuis-manifold (M, h) we have:

$$h^\alpha[X, Y] = -\sum_{j=1}^{\alpha-1} [h^{\alpha-j}X, h^jY] + \sum_{j=0}^{\alpha-1} h[h^{\alpha-j-1}X, h^jY]$$

$\forall \alpha = 1, \ldots$ and $\forall X, Y \in TM$.

Proof. It is easy to prove by induction the proposition, which holds when $[h, h] = 0$. In fact, it is true for $\alpha = 2$. Suppose it is true up the order $\alpha - 1$. Then
∀X, Y ∈ TM; ∀α = 1, 2, . . . we have:
\[h^α[X, Y] = hh^{α-1}[X, Y] = -\sum_{j=1}^{α-2} h[h^{α-j-1}X, h^jY] + \sum_{j=0}^{α-2} h^2[h^{α-j-2}X, h^jY] \]
\[= -\sum_{j=1}^{α-2} h[h^{α-j-1}X, h^jY] - \sum_{j=1}^{α-1} [h^{α-j}X, h^jY] + \sum_{j=0}^{α-1} h[h^{α-j-1}X, h^jY] \]
\[+ \sum_{j=1}^{α-1} h[h^{α-j-1}X, h^jY] - h[X, h^{α-1}Y] \]
\[= -\sum_{j=1}^{α-1} [h^{α-j}X, h^jY] + \sum_{j=0}^{α-1} h[h^{α-j-1}X, h^jY]. \]

\[\square \]

2. Complete Integrability of dh*d in the Nilpotent Case

Suppose, in this section, that (M, h) is a Nijenhuis-manifold, h is nilpotent and decomposes TM in s cyclic subspaces. Using the notations of section 1 we have:

Proposition 2.3. The subspaces ker h^r; r = 1, . . . , p − 1 are involutive if and only if ∀i, j = 1, . . . , s such that j ≥ i, we have; \([v^α_i, v^β_j] \in ker h^h\) for α = 1, . . . , q_i, β = 1, . . . , q_j.

Proof. The condition is sufficient. Let r ∈ {1, . . . , p − 1}. ker h^r is involutive, \(X := h^{q_i-r}(v^i_1), Y := h^{q_j-r}(v^j_1)\) where \(r'' \geq r\) and \(r' \geq r\), be two elements of ker h^r. We suppose that i, j are arranged in such a way i ≤ j. If \(r'' \geq r' \geq r\) we have:
\[0 = h^0[v^1_i, h^{q_i-r'''}(v^j_1)] \]
\[= -\sum_{u=1}^{q_i-1} [h^{q_i-u}(v^i_1), h^{q_i-r'''+u}(v^j_1)] + \sum_{u=0}^{q_j-1} h[h^{q_i-u-1}(v^i_1), h^{q_j-r'''+u}(v^j_1)] \]
\[= -\sum_{u=1}^{r''-1} [h^{q_i-u}(v^i_1), h^{q_j-r'''+u}(v^j_1)] + \sum_{u=0}^{r'-1} h[h^{q_i-u-1}(v^i_1), h^{q_j-r'''+u}(v^j_1)] \]
\[= -\sum_{u=1}^{r'-1} [h^{q_j-r'}(v^i_1), h^{q_j-r'''}(v^j_1)] + \sum_{u=0}^{r'-'-1} h[h^{q_j-r'-1}(v^i_1), h^{q_j-r'''}(v^j_1)] = h^r[X, Y]. \]

We deduce that \([X, Y] \in ker h^r\) and consequently \([X, Y] \in ker h^r\) because \(r' \leq r\). Similarly, if \(r' \geq r'' \geq r\), then
\[0 = h^q[v^{r''-r'+1}_1, v^{q_j-r'''+1}_j] = h^q[h^{r''-r'+1}_1, h^{q_j-r'''}(v^j_1)] = h^{r''}[X, Y]. \]
Consequently $[X, Y] \in \ker h^r$. Therefore $\ker h^r$ is involutive for every natural integer r. Conversely, let $v_i^\alpha \in \ker h^{q_i}, \ v_j^\beta \in \ker h^{q_j}, \ i \leq j$. We deduce that $\ker h^{q_j} \subseteq \ker h^{q_i}$ since $q_i \geq q_j$ but $\ker h^{q_j}$ is involutive, then $[v_i^\alpha, v_j^\beta] \in \ker h^{q_j}$.

Theorem 2.1. Suppose that h is nilpotent of order p ($p \geq 2$), analytic, $\{h, h\} = 0$ and such that $\dim(\text{Im} \ h^{p-1}) \geq \dim(\ker h) - 1$. Fix $x_0 \in M$. Then there exists a neighborhood U of x_0 such that any $x \in U$ admits a “complete system” of conservation laws.

Proof. $\dim(\text{Im} \ h^{p-1}) \geq \dim(\ker h) - 1$ implies that $\dim V_i = q_i = p$ for $i = 1, \ldots, s - 1$. In the other hand, all the cyclic subspaces but the last are of the same dimension. In this case the order of nilpotence of h is equal to p, which implies that the square bracket of two arbitrary vector fields, at point x_0 is an element of $\ker h^{q_s}_{x_0} = T_{x_0} M$. Then, $\forall i, j = 1, \ldots, s$ such that $j \geq i$, we have: $[v_i^\alpha, v_j^\beta] \in \ker h^{q_j}$ for $\alpha = 1, \ldots, q_i, \ \beta = 1, \ldots, q_j$. In particular case, if $j = i = s$ the two vectors v_s^α, v_s^β are in the cyclic subspace V_s, so the bracket of the two vectors is an element of V_s then $[v_s^\alpha, v_s^\beta] \in \ker h^{q_s}$. This allows us to apply the previous proposition and say that the operator dh^*d is completely integrable. □

Corollary 2.1. If h is nilpotent of order p ($p \geq 2$), analytic, $\{h, h\} = 0$ and such that h is 2-cyclic, then the operator dh^*d is completely integrable.

Proof. It’s particular case of the previous theorem. In fact $s - 1 = 1$ and $\dim V_1 = p$. □

References

M. Mehdi, Lebanese University, Faculty of science I, BP 13.5292 chouran, Beirut, Lebanon; e-mail: mehdi@ul.edu.lb