SUPERREFLEXIVITY AND J–CONVEXITY OF BANACH SPACES

J. WENZEL

Abstract. A Banach space X is superreflexive if each Banach space Y that is finitely representable in X is reflexive. Superreflexivity is known to be equivalent to J-convexity and to the non-existence of uniformly bounded factorizations of the summation operators S_n through X.

We give a quantitative formulation of this equivalence.

This can in particular be used to find a factorization of S_n through X, given a factorization of S_N through $[L_2,X]$, where N is ‘large’ compared to n.

1. Introduction

Much of the significance of the concept of superreflexivity of a Banach space X is due to its many equivalent characterizations, see e.g. Beauzamy [1, Part 4].

Some of these characterizations allow a quantification, that makes also sense in non superreflexive spaces. Here are two examples.

Definition. Given n and $0 < \varepsilon < 1$, we say that a Banach space X is $J(n,\varepsilon)$-convex, if for all elements $z_1, \ldots, z_n \in U_X$ we have

$$\inf_{1 \leq k \leq n} \left\| \sum_{h=1}^{k} z_h - \sum_{h=k+1}^{n} z_h \right\| < n(1 - \varepsilon).$$

We let $J_n(X)$ denote the infimum of all ε, such that X is not $J(n,\varepsilon)$-convex.

Definition. Given n and $\sigma \geq 1$, we say that a Banach space X factors the summation operator S_n with norm σ, if there exists a factorization $S_n = B_n A_n$ with $A_n : l_1^n \to X$ and $B_n : X \to l_\infty^n$ such that $\|A_n\| \|B_n\| = \sigma$.

We let $S_n(X)$ denote the infimum of all σ, such that X factors S_n with norm σ.

Here, the summation operator $S_n : l_1^n \to l_\infty^n$ is given by

$$(\xi_k) \mapsto \left(\sum_{h=1}^{k} \xi_h \right)$$

and U_X denotes the unit ball of the Banach space X.
It is known that a Banach space is superreflexive if and only if it is $J(n, \varepsilon)$-convex for some n and $\varepsilon > 0$, or equivalently, if it does not factor the summation operators with uniformly bounded norm; see James [5, Th. 5, Lem. B], and Schäffer/Sundaresan [9, Th. 2.2].

Using the terminology introduced above, this can be reformulated as follows:

Theorem 1. For a Banach space X the following properties are equivalent:

(i) X is not superreflexive.

(ii) For all $n \in \mathbb{N}$ we have $J_n(X) = 0$.

(iii) There is a constant $\sigma \geq 1$ such that for all $n \in \mathbb{N}$ we have $S_n(X) \leq \sigma$.

(iv) For all $n \in \mathbb{N}$ we have $S_n(X) = 1$.

There are two conceptually different methods to prove that X is superreflexive if and only if $[L_2, X]$ is. The one is to use Enflo’s renorming result [2, Cor. 3], which is not suited to be localized, the other is the use of J-convexity, see Pisier [7, Prop. 1.2]. It turns out that for fixed n

$$J_n([L_2, X]) \leq J_n(X) \leq 2n^2 J_n([L_2, X]);$$

see Section 2 for a proof. Similar results hold also in the case of B-convexity; see [8, p. 30].

Theorem 2. If for some n and all $\varepsilon > 0$, $[L_2, X]$ contains $(1 + \varepsilon)$ isomorphic copies of l_1^n, then X contains $(1 + \varepsilon)$ isomorphic copies of l_1^n.

Theorem 3. If for some n and all $\varepsilon > 0$, $[L_2, X]$ contains $(1 + \varepsilon)$ isomorphic copies of l_∞^n, then X contains $(1 + \varepsilon)$ isomorphic copies of l_∞^n.

On the other hand, no result of this kind for the factorization of S_n is known, i.e. if for some n and all $\varepsilon > 0$, $[L_2, X]$ factors S_n with norm $(1 + \varepsilon)$, does it follow that X factors S_n with norm $(1 + \varepsilon)$?

Assuming $S_n([L_2, X]) \leq \sigma$ for some constant σ and all $n \geq 1$, one can use Theorem 1 to obtain that $J_n([L_2, X]) = 0$ for all $n \geq 1$ and consequently $S_n(X) = 1$.

The intent of our paper is to keep n fixed in this reasoning. Unfortunately, we don’t get a result as smooth as Theorems 2 and 3. Instead, we have to consider two different values n and N. If $S_N([L_2, X]) = \sigma$ for some ‘large’ N, then $S_n(X) \leq (1 + \varepsilon)$ for some ‘small’ n. To make this more precise, let us introduce the iterated exponential (or TOWER) function $P_\delta(m)$. We let

$$P_0(m) := m \quad \text{and} \quad P_\delta+1(m) := 2P_\delta(m).$$

We will prove the following two theorems.

Theorem 4. For fixed $n \in \mathbb{N}$ and $\sigma > 1$ there is $\varepsilon > 0$ such that $J_n(X) \leq \varepsilon$ implies $S_n(X) < \sigma$. In particular $J_n(X) = 0$ implies $S_n(X) = 1$.

Theorem 5. For fixed $n \in \mathbb{N}$, $\varepsilon > 0$ and $\sigma \geq 1$ there is a number $N(\varepsilon, n, \sigma)$, such that $S_N(X) \leq \sigma$ implies $J_n(X) < \varepsilon$. The number N can be estimated by

$$N \leq P_m(cn),$$

where m and c depend on σ and ε only.

Using (1), we obtain the following consequence.

Corollary 6. For fixed $n \in \mathbb{N}$, $\sigma_1 > 1$, and $\sigma_2 \geq 1$ there is a number $N(\sigma_1, n, \sigma_2)$ such that $S_N([L_2, X]) \leq \sigma_2$ implies $J_n([L_2, X]) < \sigma_1$.

Proof. Determine ε as in Theorem 4 such that $J_n(X) \leq \varepsilon$ implies $S_n(X) < \sigma_1$.

Choose $N = N(\sigma_1, n, \sigma_2)$ as in Theorem 5 such that $S_N([L_2, X]) \leq \sigma_2$ implies $J_n([L_2, X]) < \varepsilon$ and hence $S_n(X) < \sigma_1$. \Box

The estimate in Theorem 5 seems rather crude, and we have no idea, whether or not it is optimal.

2. Proofs

First of all, we list some elementary properties of the sequences $S_n(X)$ and $J_n(X)$.

Fact.

(i) The sequence $(S_n(X))$ is non-decreasing.

(ii) $1 \leq S_n(X) \leq (1 + \log n)$ for all infinite dimensional Banach spaces X.

(iii) The sequence $(nJ_n(X))$ is non-decreasing.

(iv) For all $n, m \in \mathbb{N}$ we have $J_n(X) \leq J_{nm}(X) \leq J_n(X) + 1/n$.

(v) If $J_n(X) \to 0$ then for all $n \in \mathbb{N}$ we have $J_n(X) = 0$.

(vi) $J_n(\mathbb{R}) \geq 1 - 1/n$ for all $n \in \mathbb{N}$.

(vii) If q and ε are related by $\varepsilon \geq (1 - \varepsilon)^q - 1$ then $J_n(l_q) \leq 4\varepsilon$ for all $n \in \mathbb{N}$.

Proof. The monotonicity properties (i) and (iii) are trivial.

The bound for $S_n(X)$ in (ii) follows from the fact that the summation operator S_n factors through l_2^n with norm $(1 + \log n)$ and from Dvoretzky’s Theorem.

To see (iv) assume that X is $J(n, \varepsilon)$-convex. Given $z_1, \ldots, z_{nm} \in U_X$, let

$$x_h := \frac{1}{m} \sum_{k=1}^m z_{(h-1)m+k} \quad \text{for } h = 1, \ldots, n.$$

Then

$$\inf_{1 \leq k \leq nm} \left\| \sum_{h=1}^k z_h - \sum_{h=k+1}^{nm} z_h \right\| \leq m \inf_{1 \leq k \leq n} \left\| \sum_{h=1}^k x_h - \sum_{h=k+1}^n x_h \right\| < mn(1 - \varepsilon),$$

which proves that X is $J(nm, \varepsilon)$-convex, and consequently $J_n(X) \leq J_{nm}(X)$.

Assume now that X is $J(nm, \varepsilon)$-convex. Given $z_1, \ldots, z_n \in U_X$, let

$$x_1 = \ldots = x_m := z_1$$
$$\vdots$$
$$x_{(n-1)m+1} = \ldots = x_{nm} := z_n.$$

If

$$\inf_{1 \leq k \leq nm} \left\| \sum_{h=1}^{k} x_h - \sum_{h=k+1}^{nm} x_h \right\|$$

is attained for k_0,

there is $l \in \{0, \ldots, n\}$ such that

$$m/2 + (l-1)m < k_0 \leq m/2 + lm,$$

hence

$$\left\| \sum_{h=1}^{k_0} x_h - \sum_{h=k_0+1}^{nm} x_h \right\| \geq \left\| \sum_{h=1}^{lm} x_h - \sum_{h=lm+1}^{nm} x_h \right\| - 2 \sum_{h \in I} \|x_h\|,$$

where $I = \{k_0 + 1, \ldots, lm\}$ or $I = \{lm + 1, \ldots, k_0\}$ according to whether $k_0 \leq lm$ or $k_0 > lm$. It follows that

$$nm(1 - \varepsilon) > m \inf_{1 \leq k \leq n} \left\| \sum_{h=1}^{k} z_h - \sum_{h=k+1}^{n} z_h \right\| - m,$$

and hence $J_n(X) \geq \varepsilon - 1/n$. This proves (iv).

(v) is a consequence of (iv).

For (vi) and (vii) see Section 3.

For the convenience of the reader, let us repeat the argument for the proof of (1) from [1]. The left-hand part of (1) is obvious, since X can be isometrically embedded into $[L_2, X]$. To see the right-hand inequality, assume that for all $z_1, \ldots, z_n \in U_X$

$$\inf_{1 \leq k \leq n} \left\| \sum_{h=1}^{k} z_h - \sum_{h=k+1}^{n} z_h \right\| < n(1 - \varepsilon).$$

Obviously, if $\|z_1\| = \ldots = \|z_n\|$ it follows by homogeneity that

$$\inf_{1 \leq k \leq n} \left\| \sum_{h=1}^{k} z_h - \sum_{h=k+1}^{n} z_h \right\| < (1 - \varepsilon) \sum_{k=1}^{n} \|z_k\|,$$

If z_1, \ldots, z_n are arbitrary, let $m := \min_{1 \leq k \leq n} \|z_k\|$, $\lambda_k := m/\|z_k\|$, and $\tilde{z}_k := (1 - \lambda_k)z_k$. It turns out that $\|z_k - \tilde{z}_k\| = m$ and therefore by (2)

$$\inf_{1 \leq k \leq n} \left\| \sum_{h=1}^{k} z_h - \sum_{h=k+1}^{n} z_h \right\| < \sum_{k=1}^{n} \|\tilde{z}_k\| + (1 - \varepsilon) \sum_{k=1}^{n} \|z_k - \tilde{z}_k\|$$

$$\leq \sum_{k=1}^{n} ((1 - \lambda_k) + (1 - \varepsilon)\lambda_k) \|z_k\| \leq \left(\sum_{k=1}^{n} (1 - \varepsilon\lambda_k)^2 \right)^{1/2} \left(\sum_{k=1}^{n} \|z_k\|^2 \right)^{1/2}.$$
Now, at least one of the λ_k’s equals one, while the others are greater than or equal to zero. This yields

$$\inf_{1 \leq k \leq n} \left\| \sum_{h=1}^{k} z_h - \sum_{h=k+1}^{n} z_h \right\| < \left((1 - \varepsilon)^2 + n - 1 \right)^{1/2} \left(\sum_{k=1}^{n} \| z_k \|^2 \right)^{1/2}$$

$$\leq (n - 2\varepsilon + \varepsilon^2)^{1/2} \left(\sum_{k=1}^{n} \| z_k \|^2 \right)^{1/2}.$$

On the other hand, we trivially get that for all $1 \leq k \leq n$

$$\left\| \sum_{h=1}^{k} z_h - \sum_{h=k+1}^{n} z_h \right\| \leq n^{1/2} \left(\sum_{k=1}^{n} \| z_k \|^2 \right)^{1/2}.$$

Therefore

$$\sum_{k=1}^{n} \left\| \sum_{h=1}^{k} z_h - \sum_{h=k+1}^{n} z_h \right\|^2 < (n - 2\varepsilon + \varepsilon^2) + (n - 1)n \sum_{k=1}^{n} \| z_k \|^2$$

for all $z_1, \ldots, z_n \in X$. If in particular $f_1, \ldots, f_n \in U_{[L_2, X]}$, then

$$\sum_{k=1}^{n} \left\| \sum_{h=1}^{k} f_h(t) - \sum_{h=k+1}^{n} f_h(t) \right\|^2 < (n^2 - 2\varepsilon + \varepsilon^2) \sum_{k=1}^{n} \| f_k(t) \|^2.$$

Integration with respect to t yields

$$\sum_{k=1}^{n} \left\| \sum_{h=1}^{k} f_h - \sum_{h=k+1}^{n} f_h \right\|^2_{L_2} < (n^2 - 2\varepsilon + \varepsilon^2) \sum_{k=1}^{n} \| f_k \|^2_{L_2} \leq n(n^2 - 2\varepsilon + \varepsilon^2).$$

This implies that

$$\inf_{1 \leq k \leq n} \left\| \sum_{h=1}^{k} f_h - \sum_{h=k+1}^{n} f_h \right\|_{L_2} < (n^2 - 2\varepsilon + \varepsilon^2)^{1/2} \leq n(1 - \delta)$$

for $\delta = \varepsilon/2n^2$. Therefore $J_n([L_2, X]) \geq J_n(X)/2n^2$. \qed

Let us now prove Theorem 4.

Proof of Theorem 4. Choose $\varepsilon < \frac{1}{2(n+2)!}$ such that $1 + 2(n+2)!\varepsilon < \sigma$. If $J_n(X) \leq \varepsilon$, we find $z_1, \ldots, z_n \in U_X$ be such that

$$\inf_{1 \leq k \leq n} \left\| \sum_{h=1}^{k} z_h - \sum_{h=k+1}^{n} z_h \right\| \geq n(1 - \varepsilon).$$
By the Hahn-Banach theorem, we find $y_k \in U_{X^*}$ such that

$$n(1 - \varepsilon) \leq \sum_{h=1}^{k} \langle z_h, y_k \rangle - \sum_{h=k+1}^{n} \langle z_h, y_k \rangle.$$

Obviously $|\langle z_h, y_k \rangle| \leq 1$. If for some $h \leq k$ we even have

$$\langle z_h, y_k \rangle < 1 - n\varepsilon,$$

then

$$n(1 - \varepsilon) \leq \sum_{i=1}^{k} \langle z_i, y_k \rangle - \sum_{i=k+1}^{n} \langle z_i, y_k \rangle < (n - 1) + (1 - n\varepsilon) = n(1 - \varepsilon),$$

which is a contradiction. Hence

(3) $1 - n\varepsilon \leq \langle z_h, y_k \rangle \leq 1$ for all $h \leq k$.

Similarly

(4) $1 - n\varepsilon \leq -\langle z_h, y_k \rangle \leq 1$ for all $h > k$.

Let $x_h := (z_1 + z_h)/2$. Then it follows from (3) and (4) that there are $x_1, \ldots, x_n \in U_X$ and $y_1, \ldots, y_n \in U_{X^*}$ so that

$$\langle x_h, y_k \rangle \in \begin{cases} (1 - n\varepsilon, 1) & \text{if } h \leq k, \\ (-n\varepsilon, +n\varepsilon) & \text{if } h > k. \end{cases}$$

The assertion now follows from the following distortion lemma. \square

Lemma 7. Suppose that $\varepsilon < \frac{1}{2(n+1)!}$ and that there are $x_1, \ldots, x_n \in U_X$ and $y_1, \ldots, y_n \in U_{X^*}$ such that

$$\langle x_h, y_k \rangle \in \begin{cases} (1 - \varepsilon, 1) & \text{if } h \leq k, \\ (-\varepsilon, +\varepsilon) & \text{if } h > k. \end{cases}$$

Then $S_n(X) \leq 1 + 2(n + 1)!\varepsilon$.

Proof. Fix $h \in \{1, \ldots, n\}$. Let $\alpha_{lk} := \langle x_l, y_k \rangle$. Consider the system of linear equations

$$\sum_{l=1}^{n} \alpha_{lk} \xi_l = \begin{cases} 1 - \alpha_{hk} & \text{if } h \leq k, \\ -\alpha_{hk} & \text{if } h > k, \end{cases} \quad k = 1, \ldots, n.$$
in the n variables ξ_1, \ldots, ξ_n. Its solution is given by

$$\xi_m^{(h)} = \frac{\det(\beta_l^{(m)})}{\det(\alpha_l)}$$

where $(\beta_l^{(m)})$ is the matrix (α_l) but with its m-th column replaced by the right-hand side of our system of equations. It follows that

$$|\det(\beta_l^{(m)})| = \left| \sum_\pi \sgn(\pi) \prod_{k=1}^n \beta_{k\pi(k)}^{(m)} \right| \leq n!|\beta_{m\pi(m)}^{(m)}| \leq n!\varepsilon.$$

Since for all permutations π that are not the identity, there exists at least one k such that $\pi(k) > k$, we have $|\alpha_{\pi(k)k}| < \varepsilon$ and hence

$$|\det(\alpha_l)| = \left| \sum_\pi \sgn(\pi) \prod_{k=1}^n \alpha_{\pi(k)k} \right| \geq \left| \prod_{k=1}^n \alpha_{kk} \right| - \sum_{\pi \neq \text{id}} \varepsilon$$

$$\geq (1 - \varepsilon)^n - n!\varepsilon \geq 1 - n\varepsilon - n!\varepsilon \geq 1 - (n + 1)!\varepsilon.$$

Hence if $\varepsilon < \frac{1}{2(n+1)!}$ the solutions $\xi_m^{(h)}$ satisfy

$$|\xi_m^{(h)}| \leq 2n!\varepsilon.$$

Defining $A_n : l_1^n \to X$ by

$$A_ne_h := \sum_{m=1}^n x_m s_m^{(h)} + x_h,$$

we get that $\|A_n\| \leq 1 + \sup_h \sum_{m=1}^n |s_m^{(h)}| \leq 1 + 2(n+1)!\varepsilon$. Defining $B_n : X \to l_\infty^n$ by

$$B_n x := ((x,y_k))_{k=1}^n,$$

we get that $\|B_n\| \leq 1$ and $S_n = B_n A_n$. This completes the proof, since $S_n(X) \leq \|A_n\| \|B_n\| \leq 1 + 2(n+1)!\varepsilon$.

Interlude on Ramsey theory

Our proof of Theorem 5 makes massive use of the general form of Ramsey’s Theorem. Therefore, for the convenience of the reader, let us recall, what it says; see [3] and [6].

For a set M and a positive integer k, let $M[k]$ be the set of all subsets of M of cardinality k.
Theorem 8. Given \(r, k \) and \(n \), there is a number \(R_k(n, r) \) such that for all \(N \geq R_k(n, r) \) the following holds:

For each function \(f : \{1, \ldots, N\}^k \to \{1, \ldots, r\} \) there exists a subset \(M \subseteq \{1, \ldots, N\} \) of cardinality at least \(n \) such that \(f(M^k) \) is a singleton.

The following estimate for the Ramsey number \(R_k(l, r) \) can be found in [3, p. 106].

Lemma. There is a number \(c(r, k) \) depending on \(r \) and \(k \), such that

\[R_k(l, r) \leq P_k(c(r, k) \leq l) \]

We can now turn to the proof of Theorem 5.

Proof of Theorem 5. The proof follows the line of James’s proof in [4, Th. 1.1].

The main new ingredient is the use of Ramsey’s Theorem to estimate the number \(N \).

Let \(n, \varepsilon > 0 \), and \(\sigma \) be given. Define \(m \) by

\[2m\sigma < \left(\frac{1}{1 - \varepsilon} \right)^{m-1} \]

and let

\[N := R_{2m}(R_{2m}(2nm + 1, m), m) \]

where \(R \) denotes the Ramsey number introduced in the previous paragraph.

The required estimate for \(N \) then follows from Lemma 9 as follows

\[N \leq P_{2m}(c_1 P_{2m}(c_2 2nm)) \leq P_{4m}(c_3 n) \]

where \(c_1, c_2, \) and \(c_3 \) are constants depending on \(m \), which in turn depends on \(\sigma \) and \(\varepsilon \).

Replacing, e.g. \(\sigma \) by \(2\sigma \), we may assume that in fact \(S_N(X) < \sigma \) in order to avoid using an additional \(\delta \) in the notation.

If \(S_N(X) < \sigma \) then there are \(A_N : l_1^N \to X \) and \(B_N : X \to l_\infty^N \) such that \(S_N = B_N A_N \) and \(\| A_N \| = 1 \), \(\| B_N \| \leq \sigma \). Let \(x_h := A_N e_h \) and \(y_k := B_N e_k \). Note that

\[\| x_h \| \leq 1, \quad \| y_k \| \leq \sigma, \quad \text{and} \quad (x_h, y_k) = \begin{cases} 1 & \text{if } h \leq k, \\ 0 & \text{if } h > k. \end{cases} \]

For each subset \(M \subseteq \{1, \ldots, N\} \), we let \(\mathcal{F}_m(M) \) denote the collection of all sequences \(F = (F_1, \ldots, F_m) \) of consecutive intervals of numbers, whose endpoints are in \(M \), i.e.

\[F_j = \{ l_j, l_j + 1, \ldots, r_j \}, \quad l_j, r_j \in M, \quad l_j < r_j < l_{j+1}, \]

for \(j = 1, \ldots, m \). Note that \(\mathcal{F}_m(M) \) can be identified with \(M^{[2m]} \).
The outline of the proof of Theorem 5 is as follows. To each \(F = (F_1, \ldots, F_m) \), we assign an element \(x(F) \) which in fact is a linear combination of the elements \(x_1, \ldots, x_N \). Next, we extract a ‘large enough’ subset \(M \) of \(\{1, \ldots, N\} \), such that all \(x(F) \) with \(F \in \mathcal{F}_m(M) \) have about equal norm. Finally, we look at special sequences \(F(1), \ldots, F(n) \) and \(E(1), \ldots, E(n) \) in \(\mathcal{F}_m(M) \) such that

\[
\left\| \sum_{h=1}^{k} x(F^{(h)}) - \sum_{h=k+1}^{n} x(E^{(h)}) \right\| \geq n \|x(E^{(k)})\|.
\]

Since \(\|x(E^{(k)})\| \asymp \|x(F^{(h)})\| \), normalizing the elements \(x(F^{(h)}) \) yields the required elements \(z_1, \ldots, z_n \) to prove that \(J_n(X) < \varepsilon \).

Let us start by choosing the elements \(x(F) \). For a sequence \(F \in \mathcal{F}_m(M) \), we define

\[
S(F) := \left\{ x = \sum_{h=1}^{N} \xi_h x_h : \sup_{h} |\xi_h| \leq 2, \ (x, y_l) = (-1)^j \text{ for all } l \in F_j \text{ and } j = 1, \ldots, m \right\}.
\]

By compactness, there is \(x(F) \in S(F) \) such that

\[
\|x(F)\| = \inf_{x \in S(F)} \|x\|.
\]

Lemma 10. We have \(1/\sigma \leq \|x(F)\| \leq 2m \) for all \(F \in \mathcal{F}_m(\{1, \ldots, N\}) \).

Proof. Write \(F_j = \{l_j, \ldots, r_j\} \) and let

\[
x := -x_{l_1} + 2 \sum_{i=2}^{m} (-1)^i x_{l_i}.
\]

Then for \(l \in F_j \), we have

\[
(x, y_l) = -1 + 2 \sum_{i=2}^{j} (-1)^i \cdot 1 + 2 \sum_{i=j+1}^{m} (-1)^i \cdot 0 = (-1)^j,
\]

hence \(x \in S(F) \) and \(\|x(F)\| \leq \|x\| \leq 2m - 1 \).

On the other hand,

\[
1 = |(x(F), y_{l_1})| \leq \sigma \|x(F)\|.
\]

Hence \(1/\sigma \leq \|x(F)\| \).

By (5), we can write the interval \([1/\sigma, 2m]\) as a disjoint union as follows

\[
\left[\frac{1}{\sigma}, 2m \right] \subseteq \bigcup_{i=1}^{m-1} A_i, \text{ where } A_i := \frac{1}{\sigma} \left[\left(\frac{1}{1-\varepsilon} \right)^{i-1}, \left(\frac{1}{1-\varepsilon} \right)^i \right].
\]
For $F = (F_1, \ldots, F_m) \in \mathcal{F}_m(\{1, \ldots, N\})$ and $1 \leq j \leq m$, let
\[P_j(F) := (F_1, \ldots, F_j) \in \mathcal{F}_j(\{1, \ldots, N\}). \]
Obviously
\[\|x(P_{j-1}(F))\| \leq \|x(P_j(F))\| \leq 2m \quad \text{for } j = 2, \ldots, m. \]
It follows that for each $F \in \mathcal{F}_m(\{1, \ldots, N\})$ there is at least one index j for which
the two values $\|x(P_{j-1}(F))\|$ and $\|x(P_j(F))\|$ belong to the same interval A_i.
Applying Ramsey’s Theorem to that function, yields the existence of a number j_0
and a subset L of $\{1, \ldots, N\}$ of cardinality $|L| \geq R_{2m}(2nm + 1, m)$ such that for
all $F \in \mathcal{F}_m(L)$ the two values $\|x(P_{j_0-1}(F))\|$ and $\|x(P_{j_0}(F))\|$ belong to the same
of the intervals A_i.
Next, for each $F \in \mathcal{F}_m(L)$ there is a unique number i for which the value
$\|x(P_{j_0}(F))\|$ belongs to the interval A_i. Letting $g(F)$ be that number i, defines a
function $g: L[2^m] \to \{1, \ldots, m\}$.
We now define sequences
\[F(h) := (F_1^{(h)}, \ldots, F_m^{(h)}) \quad \text{and} \quad E(k) := (E_1^{(k)}, \ldots, E_{m-1}^{(k)}) \]
of nicely overlapping intervals.
Write $M = \{p_1, \ldots, p_{2nm+1}\}$, where $p_1 < p_2 < \cdots < p_{2nm+1}$ and define
\[F^{(h)} := (F_1^{(h)}, \ldots, F_m^{(h)}) \in \mathcal{F}_m(M) \quad \text{for } h = 1, \ldots, n \]
as follows
\[F_j^{(h)} := \begin{cases} \{p_{2h-1}, \ldots, p_{n+2h-1}\} & \text{if } j = 1, \\ \{p_{n+2(j-1)+2h}, \ldots, p_{n+2j-1}+2h-1\} & \text{if } j = 2, \ldots, m-1, \\ \{p_{n(2m-3)+2h}, \ldots, p_{n(2m-1)+h}\} & \text{if } j = m. \end{cases} \]
It turns out that

(9) \[E_j^{(k)} := \bigcap_{h=1}^{k} F_j^{(h)} \cap \bigcap_{h=k+1}^{n} F_j^{(h)} \quad k = 1, \ldots, n \]

is given by

\[E_j^{(k)} := \{ p_{n(2j-1)+2k}, \ldots, p_{n(2j-1)+2k+1} \} \quad \text{if} \; j = 1, \ldots, m - 1. \]

Hence \((E_1^{(k)}, \ldots, E_m^{(k)}) \in \mathcal{F}_m(M)\). In order to obtain an element of \(\mathcal{F}_m(M)\) we add the auxiliary set \(E_m^{(k)} := \{ p_{2nm}, \ldots, p_{2nm+1} \}\), this can be done for \(n \geq 2\), which is the only interesting case anyway since \(J_1(X) = 0\) for any Banach space \(X\). We have \((E_1^{(k)}, \ldots, E_m^{(k)}) \in \mathcal{F}_m(M)\).

The following picture shows the sets \(E_j^{(k)}\) and \(F_j^{(k)}\) in the case \(n = 3\) and \(m = 4\):

![Diagram showing sets E_j^{(k)} and F_j^{(k)}](image)

It follows from (9) that for \(1 \leq k \leq n\)

\[\frac{1}{n} \left(- \sum_{h=1}^{k} x(P_{j_0}([E^{(h)}])) + \sum_{h=k+1}^{n} x(P_{j_0}([E^{(h)}])) \right) \in S(P_{j_0-1}([E^{(k)}])) \]

hence

\[\left\| \sum_{h=1}^{k} x(P_{j_0}([E^{(h)}])) - \sum_{h=k+1}^{n} x(P_{j_0}([E^{(h)}])) \right\| \geq n \| x(P_{j_0-1}([E^{(k)}])) \|. \]

Let \(z_h := \sigma (1 - \varepsilon)^{i_h} x(P_{j_0}([E^{(h)}]))\). Then

\[\left\| \sum_{h=1}^{k} z_h - \sum_{h=k+1}^{n} z_h \right\| \geq n \sigma (1 - \varepsilon)^i \| x(P_{j_0-1}([E^{(k)}])) \|. \]

By (7) we have \(\| x(P_{j_0}([E^{(h)}])) \| \in A_{i_0}\), which implies \(\| z_h \| \leq 1\). On the other hand, by (8) we have \(\| x(P_{j_0-1}([E^{(k)}])) \| \in A_{i_0}\), which implies

\[\left\| \sum_{h=1}^{k} z_h - \sum_{h=k+1}^{n} z_h \right\| \geq n \sigma (1 - \varepsilon)^{i_0} \frac{1}{\sigma} \left(\frac{1}{1 - \varepsilon} \right)^{i_0-1} = n (1 - \varepsilon). \]

Consequently \(J_n(X) \leq \varepsilon. \) \(\square\)
3. Problems and Examples

Example 1. $J_n(\mathbb{R}) \geq 1 - 1/n$.

Proof. Let $|\xi_h| \leq 1$ for $h = 1, \ldots, n$. For $k = 1, \ldots, n$ define

$$\eta_k := \sum_{h=1}^{k} \xi_h - \sum_{h=k+1}^{n} \xi_h$$

and let $\eta_0 := -\eta_n$. Obviously $|\eta_k - \eta_{k+1}| \leq 2$ for $k = 0, \ldots, n-1$. Since $\eta_0 = -\eta_n$ there exists at least one k_0 such that $\text{sgn} \eta_{k_0} \neq \text{sgn} \eta_{k_0+1}$. Assume that $|\eta_{k_0}| > 1$ and $|\eta_{k_0+1}| > 1$, then $|\eta_{k_0} - \eta_{k_0+1}| > 2$, a contradiction. Hence there is k such that $|\eta_k| \leq 1$. This proves that

$$\inf_{1 \leq k \leq n} \left| \sum_{h=1}^{k} \xi_h - \sum_{h=k+1}^{n} \xi_h \right| \leq 1 = n \frac{1}{n},$$

and hence $J_n(\mathbb{R}) \geq 1 - \frac{1}{n}$. □

Example 2. If q and ε are related by

$$\varepsilon \geq (1 - \varepsilon)^{q-1}$$

then $J_n(l_q) \leq 4\varepsilon$ for all $n \in \mathbb{N}$.

Proof. Given $\varepsilon > 0$ find n_0 such that

$$\frac{1}{n_0} < \varepsilon \leq \frac{1}{n_0 - 1},$$

then

$$\left(\frac{1}{n_0} \right)^{1/q} \geq \left(1 - \frac{1}{n_0} \right)^{1/q} \varepsilon^{1/q} \geq 1 - \varepsilon.$$

If $n \leq n_0$, choosing

$$x_h := (-1, \ldots, -1, \overbrace{+1, \ldots, +1}^{n-h}, 0, \ldots),$$

we obtain

$$\left\| \sum_{h=1}^{k} x_h - \sum_{h=k+1}^{n} x_h \right\|_q \geq \left\| \sum_{h=1}^{k} x_h - \sum_{h=k+1}^{n} x_h \right\|_\infty = n.$$

And since

$$\left\| x_h \right\|_q = n^{1/q} \leq n_0^{1/q} \leq 1/(1 - \varepsilon)$$

it follows that $J_n(l_q) \leq \varepsilon$.

If $n > n_0$, there is $m \geq 2$ such that $(m-1)n_0 < n \leq mn_0$. Hence, by Properties (iii) and (iv) in the fact in Section 2 it follows that

$$J_n(X) \leq \frac{mn_0}{n} J_{mn_0}(X) \leq \frac{mn_0}{n} (J_{n_0} + \frac{1}{n_0}) \leq \frac{mn_0}{n} 2\varepsilon \leq 4\varepsilon.$$ □

The main open problem of this article is the optimality of the estimate for N in Theorem 5.
Problem. Are there $\sigma \geq 1$ and $\varepsilon > 0$ and a sequence of Banach spaces (X_n) such that

$$S_{f(n)}(X_n) \leq \sigma \quad \text{and} \quad J_n(X_n) \geq \varepsilon,$$

where $f(n)$ is any function such that $f(n) > n$?

In particular $f(n) > P_m(n)$, where m is given by (5) would show that the estimate in Theorem 5 for N is sharp in an asymptotic sense.

References

J. Wenzel, Texas A&M University, Department of Mathematics, College Station, Texas 77843-3368, U.S.A.

current address: Mathematisches Institut, FSU Jena, 07740 Jena, Germany