RNP AND KMP ARE INCOMPARABLE PROPERTIES IN NONCOMPLETE SPACES

G. LÓPEZ

Abstract. We exhibit an example in a noncomplete space of a closed, bounded and convex subset verifying KMP and failing RNP and, another such example verifying RNP and failing KMP.

We begin this note by recalling some definitions: (See [2] and [3]).

Let X be a normed linear space and let C be a closed, bounded and convex subset of X.

C is said to be dentable if for each $\varepsilon > 0$ there is $x \in C$ such that $x \notin \overline{co}(C \setminus B(x,\varepsilon))$, where \overline{co} denotes the closed convex hull and $B(x,\varepsilon)$ is the closed ball with centrum x and radius ε.

C is said to have the Radon-Nikodym property (RNP) if every nonempty subset of C is dentable.

C is said to have the Krein-Milman property if every closed and convex subset, F, of C verifies $F = \overline{co}(\text{Ext } F)$, where $\text{Ext } F$ denotes the set of extreme points of F.

It is known that C has KMP if every closed and convex subset of C has some extreme point. (Even in noncomplete spaces.)

The above definition of RNP working in noncomplete spaces and, today, the most authors define RNP in Banach spaces as here.

For a Banach space X it is known that RNP implies KMP and the converse is an well known open problem.

We prove that KMP does not imply RNP in noncomplete spaces. For this we consider a closed, bounded and convex subset, STS, which appears in [1], of $c_0(\Gamma)$.

In [1] it is shown that $\overline{STS_0} = STS$ in $c_0(\Gamma)$.

Our goal is to prove that STS_0 is a closed, bounded and convex subset of $c_{00}(\Gamma)$ verifying KMP and failing RNP.

Now we descript briefly the set STS_0 of $c_{00}(\Gamma)$.

Γ denotes the set of finite sequences of natural numbers and 0 denotes the empty sequence in Γ.

Received June 29, 1995.

For \(\alpha, \beta \in \Gamma \) we define \(\alpha \leq \beta \) if \(|\alpha| \leq |\beta| \) and \(\alpha_i = \beta_i \) for \(1 \leq i \leq |\alpha| \), where \(|\alpha| \) is the length of \(\alpha \). Of course \(|0| = 0 \) and \(0 \leq \alpha \ \forall \ \alpha \in \Gamma \).

\[
\text{co}(\Gamma) = \{ x \in \mathbb{R}^\Gamma : \{ \alpha \in \Gamma : x(\alpha) \neq 0 \} \text{ is finite} \}
\]

For each \(\alpha \in \Gamma \) we define \(b_\alpha \in \text{co}(\Gamma) \) by \(b_\alpha(\gamma) = 1 \) if \(\gamma \leq \alpha \) and \(b_\alpha(\gamma) = 1 \) in other case.

\[
\text{STS}_0 = \text{co}\{ b_\alpha : \alpha \in \Gamma \} \subset \text{co}(\Gamma).
\]

So, \(\text{STS}_0 \) is a nonempty closed, bounded and convex subset of \(\text{co}(\Gamma) \).

Theorem. \(\text{STS}_0 \) has KMP and fails RNP.

Proof. It is easy to see that

\[
b_\beta \in \text{co}(A \setminus B(b_\beta, 1)) \quad \forall \beta \in \Gamma,
\]

where \(A = \{ b_\alpha : \alpha \in \Gamma \} \), because

\[
\lim_{n \to +\infty} \frac{b_{\alpha,1} + \ldots + b_{\alpha,n}}{n} = b_\alpha \quad \forall \alpha \in \Gamma.
\]

Then \(A \) is not dentable and so \(\text{STS}_0 \) fails RNP.

Now let \(C \) be a nonempty closed and convex subset of \(\text{STS}_0 \). We will see that \(\text{Ext}(C) \neq \emptyset \).

Let \(z \in C \), and \(K = \{ x \in C : \text{supp}(x) \subseteq \text{supp}(z) \} \), where for each \(x \in C \), \(\text{supp}(x) = \{ \alpha \in \Gamma : x(\alpha) \neq 0 \} \).

Now \(K \) is a nonempty, convex and compact face of \(C \). The Krein-Milman theorem says us that \(\text{Ext}(K) \neq \emptyset \) and so, \(\text{Ext}(C) \neq \emptyset \) because \(K \) is a face of \(C \).

Remark. As in [1] it is easy to see that \(\text{STS}_0 \) fails PCP (the point of continuity property) because \(\{ b_{\alpha,i} \} \) converges weakly to \(b_\alpha \) when \(i \to +\infty \), \(\forall \alpha \in \Gamma \) and \(\| b_{\alpha,i} - b_\alpha \| = 1 \ \forall \alpha \in \Gamma \). (This is not immediate because our environment space is not complete.)

Now, we give an example of a closed, bounded and convex set in a noncomplete space verifying RNP and failing KMP.

For this, we consider \(c_0 \) the Banach space of real null sequences with the maximum norm and, \(c_{00} \) the nonclosed subspace of \(c_0 \) of real sequences with a finite numbers of terms nonzero. So, \(c_{00} \) is a noncomplete normed linear space. We define:

\[
F_0 = \left\{ x \in c_{00} : |x_n| \leq \frac{1}{n} \ \forall \ n \in \mathbb{N} \right\}
\]

Then \(F_0 \) is a closed, bounded and convex subset of \(c_{00} \).

It is clear that \(F_0 \) has not extreme points because if \(x \in F_0 \) and \(k \in \mathbb{N} \) such that \(x(n) = 0 \ \forall \ n \geq k \), then \(y = x + \frac{1}{k} e_k \) and \(z = x - \frac{1}{k} e_k \) are elements of \(F_0 \) such that \(x = \frac{y + z}{2} \). (\(e_k \) is the sequence with value 1 in \(k \) and value 0 in \(n \neq k \).)
Therefore, F_0 fails KMP.
Let us see, now, that F_0 has RNP. If C is a subset of F_0, then \overline{C} is a weakly compact of c_0, since the closure of F_0 in c_0, F is it. So C is dentable. (See [2, Th. 2.3.6].)
Then F_0 has RNP and fails KMP.

References

G. López, Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, (18071), Granada, Spain, e-mail: glopezp@goliat.ugr.es