Properties And Related Inequalities Of φ-frames In Normed Spaces

Mahdi Taleb Alfakhr†, Mohsen Erfanian Omidvar‡, Hamid Reza Moradi§
PK Harikrishnan*, Silvestru Sever Dragomir$^\parallel$

Received 30 May 2018

Abstract

In this paper, we use the properties of sesquilinear forms to introduce a new class of frames, called φ-frames. The notion of continuous φ-frames, its various properties and characterizations in normed spaces are established. Also, some fundamental identities and certain inequalities related to φ-frames are obtained.

1 Notations and Preliminaries

The concept of frame in Hilbert spaces was introduced by Duffin and Schaeffer [14] to study some problems in non-harmonic Fourier series in 1952, reintroduced in 1986 by Daubechies, Grossmann, and Meyer [12] and popularized from then on. Now the theory of frames is widely studied by several authors and they have established a series of results (see [1, 4, 8, 9, 10]). A frame, which is redundant set of vectors in a Hilbert space \mathcal{H} with the property that provides non unique representations of vectors in terms of the frame elements, has been applied in filter bank theory [6], sigma-delta quantization [5], signal and image processing [7] and many other fields. A frame for a complex Hilbert space \mathcal{H} is a family of vectors $\{f_i\}_{i \in I}$ in \mathcal{H} so that there are two positive constants A and B satisfying

$$A\|f\|^2 \leq \sum_{i \in I} |\langle f, f_i \rangle|^2 \leq B\|f\|^2, \ (f \in \mathcal{H}).$$

(1.1)

The constants A and B are called the lower and upper frame bounds, respectively. A frame is said to be tight whenever $A = B$ and if we can take $A = B = 1$ it is called a Parseval frame. If the right-hand inequality of (1.1) holds, then we say that $\{f_i\}_{i \in I}$

*Mathematics Subject Classifications: 20F05, 20F10, 20F55, 68Q42.
†Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran
‡Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran
§Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, Iran
*Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Deemed to be University, Manipal-576104 Karnataka, India
\parallelDepartment Of Mathematics, College of Engineering and Science, Victoria University, P.O. Box 14428, Melbourne City, MC 8001, Australia
is a Bessel sequence for \mathcal{H} with bound B. The analytic operator associated to the frame $\{f_i\}_{i \in I}$ is defined as $T : L^2 \to \mathcal{H}$ by $T \{a_i\} = \sum_{i \in I} a_i f_i$. It is easy to see that $T^* : \mathcal{H} \to L^2$ such that $T^* (f) = \{\langle f, f_i \rangle \}_{i \in I}$. The frame operator for the frame is the positive, self-adjoint invertible operator $S = TT^* : \mathcal{H} \to \mathcal{H}$ satisfying

$$Sf = \sum_{i \in I} \langle f, f_i \rangle f_i, \quad (f \in \mathcal{H}).$$

This provides the frame decomposition

$$f = S^{-1}Sf = \sum_{i \in I} \langle f, f_i \rangle \tilde{f}_i = \sum_{i \in I} \langle f, \tilde{f}_i \rangle f_i,$$

where $\tilde{f}_i = S^{-1}f_i$. The family $\{\tilde{f}_i\}_{i \in I}$ is also a frame for \mathcal{H}, called the canonical dual frame of $\{f_i\}_{i \in I}$. If $\{f_i\}_{i \in I}$ is a Bessel sequence in \mathcal{H}, for every $J \subset I$ we define the operator S_J by

$$S_Jf = \sum_{i \in J} \langle f, f_i \rangle f_i.$$

We refer to [9, 11, 18] for an introduction to the frame theory and its applications. In this section, we recall fundamental definitions, basic properties and notations of sesquilinear forms which are needed for a comprehensive reading of this paper. This background can be found in [13]. Let \mathcal{E} be a vector space then $\varphi : \mathcal{E} \times \mathcal{E} \to \mathbb{C}$ is a sesquilinear form on \mathcal{E} if the following two conditions hold:

(a) $\varphi (\alpha x_1 + \beta x_2, y) = \alpha \varphi (x_1, y) + \beta \varphi (x_2, y),$

(b) $\varphi (x, \alpha y_1 + \beta y_2) = \overline{\alpha} \varphi (x, y_1) + \overline{\beta} \varphi (x, y_2)$

for any scalars α and β and any $x, x_1, x_2, y, y_1, y_2 \in \mathcal{E}$. Two typical examples of sesquilinear forms are as follows:

(I) Let A and B be operators on an inner product space \mathcal{E}. Then $\varphi_1 (x, y) = \langle Ax, y \rangle$, $\varphi_2 (x, y) = \langle x, By \rangle$, and $\varphi_3 (x, y) = \langle Ax, By \rangle$ are sesquilinear forms on \mathcal{E}.

(II) Let f and g be linear functionals on a vector space \mathcal{E}. Then $\varphi (x, y) = f (x) g (y)$ is a sesquilinear form on \mathcal{E}.

Let φ be a sesquilinear form on vector space \mathcal{E}, then φ is called symmetric if $\varphi (x, y) = \overline{\varphi (y, x)}$ for all $x, y \in \mathcal{E}$. A sesquilinear form φ on vector space \mathcal{E} is said to be positive if $\varphi (x, x) \geq 0$ for all $x \in \mathcal{E}$. Moreover, φ is called Cauchy-Schwarz if $(\varphi (x, y))^2 \leq \varphi (x, x) \varphi (y, y)$ for each $x, y \in \mathcal{E}$. The corresponding quadratic form associated to φ is defined as:

$$\Phi (x) = \varphi (x, x).$$

We remark that, if \mathcal{E} be a normed space and φ is a positive bounded sesquilinear form, then $\sqrt{\Phi (x)}$ defines a semi norm on \mathcal{E} (see [16, p. 52]). Let $\mathcal{B} (\mathcal{E})$ denote the algebra
of all bounded linear operators on a complex vector space \mathcal{E}. For operator $A \in \mathcal{B}(\mathcal{E})$ there exist $B \in \mathcal{B}(\mathcal{E})$ such that for each x and y in \mathcal{E}

$$\varphi(Ax, y) = \varphi(x, By).$$

In this case, B is φ-adjoint of A and it is denoted by A^*. For more information on related ideas and concepts we refer [17, p. 88-90]. The operator A in $\mathcal{B}(\mathcal{E})$ is called φ-positive if for all $x \in \mathcal{E}$, $\varphi(Ax, x) \geq 0$. We note that, $A \geq B$ if $A - B \geq 0$.

In this paper, we develop the existing notions of frames on Hilbert spaces by using the definition of sesquilinear form on a normed space \mathcal{E}. Section 2 is devoted to some elementary considerations concerning the φ-frames. Some properties and results of such frames are investigated. In Section 3, we derive some characterizations of continuous φ-frames. Finally, in the last section, we give new Parseval type identities and inequalities for φ-frames in normed spaces (see Corollary 4.1 and Proposition 4.1). Our results generalize the remarkable results obtained recently by Găvruţa.

2 φ-frames

The following basic results are essentially known as in [9], but our expression is a little bit different from those in [9]. In fact Hilbert space \mathcal{H} and inner product $\langle \cdot, \cdot \rangle$ are replaced with vector space \mathcal{E} and sesquilinear form φ respectively. Recall that a sequence $\{e_k\}_{k=1}^m$ in a vector space \mathcal{E} is a basis, if the following conditions are satisfied:

(a) $\mathcal{E} = \text{span} \{e_k\}_{k=1}^m$;
(b) $\{e_k\}_{k=1}^m$ is linearly independent.

As a consequence of above definition, every $f \in \mathcal{E}$ has a unique representation in terms of the elements in the basis, i.e., there exists unique scalar coefficients $\{c_k\}_{k=1}^m$ such that

$$f = \sum_{k=1}^m c_k e_k.$$

If $\{e_k\}_{k=1}^m$ is a φ-orthonormal basis, i.e., a basis for which

$$\varphi(e_k, e_j) = \delta_{k,j} = \begin{cases} 1 & \text{if } k = j, \\ 0 & \text{if } k \neq j, \end{cases}$$

then the coefficients $\{c_k\}_{k=1}^m$ are easy to find

$$\varphi(f, e_j) = \varphi\left(\sum_{k=1}^m c_k e_k, e_j\right) = \sum_{k=1}^m c_k \varphi(e_k, e_j) = c_j.$$

So

$$f = \sum_{k=1}^m \varphi(f, e_k) e_k.$$
A sequence \(\{f_k\}_{k=1}^{\infty} \) in a vector space \(\mathcal{E} \) is called \(\varphi \)-frame if there exist \(A, B > 0 \) such that
\[
A \varphi(f, f) \leq \sum_{k=1}^{n} |\varphi(f, f_k)|^2 \leq B \varphi(f, f), \tag{2.1}
\]
for all \(f \in \mathcal{E} \). The constants \(A \) and \(B \) are called \(\varphi \)-frame bounds. If \(A = B \), this is a tight \(\varphi \)-frame and if \(A = B = 1 \) this is a Parseval \(\varphi \)-frame. Consider a vector space \(\mathcal{E} \) equipped with a frame \(\{f_k\}_{k=1}^{m} \) and define a linear mapping
\[
T : \mathbb{C}^m \to \mathcal{E}, \quad T \{c_k\}_{k=1}^{m} = \sum_{k=1}^{m} c_k f_k.
\]
\(T \) is called the \(\varphi \)-pre-frame operator. The adjoint operator is given by
\[
T^* : \mathcal{E} \to \mathbb{C}^m, \quad T^* f = \{\varphi(f, f_k)\}_{k=1}^{m}
\]
in fact by the usual inner product on \(\mathbb{C}^m \) as the sesquilinear form \(\varphi' \) we have
\[
\varphi(T x, y) = \varphi \left(\sum_{k=1}^{m} c_k f_k, y \right) = \sum_{k=1}^{m} c_k \varphi(f_k, y)
\]
and
\[
\varphi'(x, T^* y) = \varphi' \left(\{c_k\}_{k=1}^{m}, \{\varphi(y, f_k)\}_{k=1}^{m} \right) = \sum_{k=1}^{m} c_k \varphi(f_k, y).
\]
In this case, \(T^* \) is called the analytic operator and by composing \(T \) with its adjoint \(T^* \), we obtain the \(\varphi \)-frame operator
\[
S : \mathcal{E} \to \mathcal{E}, \quad S f = TT^* f = \sum_{k=1}^{m} \varphi(f, f_k) f_k.
\]
Note that in terms of the \(\varphi \)-frame operator,
\[
\varphi(T f, f) = \sum_{k=1}^{m} |\varphi(f, f_k)|^2, \quad f \in \mathcal{E}.
\]

Remark 2.1. Let \(\varphi \) be a Cauchy-Schwarz bounded sesquilinear form, then
\[
\sum_{k=1}^{m} |\varphi(f, f_k)|^2 \leq \sum_{k=1}^{m} \Phi(f_k) \Phi(f). \tag{2.2}
\]

Proposition 2.1. Let \(\{f_k\}_{k=1}^{m} \) be a sequence in \(\mathcal{E} \). Then \(\{f_k\}_{k=1}^{m} \) is a \(\varphi \)-frame for span \(\{f_k\}_{k=1}^{m} \).
PROOF. Assume that none of the f_k's are zeros. From Remark 2.1, the upper φ-frame condition is satisfied with $B = \sum_{k=1}^{m} \Phi(f_k)$. Now let

$$W = \text{span} \{ f_k \}_{k=1}^{m}$$

and consider the continuous mapping

$$\psi : W \to \mathbb{R}, \quad \psi(f) = \sum_{k=1}^{m} |\varphi(f, f_k)|^2.$$

The unit ball in W is compact since, W is finite dimensional. So the function ψ takes its infimum on the unit ball W. We can find $g \in W$ with $\sqrt{\Phi(g)} = 1$ such that

$$A = \sum_{k=1}^{m} |\varphi(g, f_k)|^2 = \inf \left\{ \sum_{k=1}^{m} |\varphi(f, f_k)|^2 : f \in W, \sqrt{\Phi(f)} = 1 \right\}.$$

It is clear that $A > 0$. Now for $f \in W, f \neq 0$, we have

$$\sum_{k=1}^{m} |\varphi(f, f_k)|^2 = \sum_{k=1}^{m} \varphi\left(\frac{f}{\sqrt{\Phi(f)}}, f_k \right)^2 |\Phi(f)| \geq A |\Phi(f)|.$$

COROLLARY 2.1. A family of elements $\{ f_k \}_{k=1}^{m}$ in E is a φ-frame for E if and only if $\text{span} \{ f_k \}_{k=1}^{m} = E$.

THEOREM 2.1. Let $\{ f_k \}_{k=1}^{m}$ be a φ-frame for E with φ-frame operator S. Then

(a) S is invertible and self adjoint.

(b) Every $f \in E$ can be represented as

$$f = \sum_{k=1}^{m} \varphi(f, S^{-1}f_k) f_k = \sum_{k=1}^{m} \varphi(f, f_k) S^{-1}f_k. \quad (2.3)$$

PROOF. Since $S = TT^*$, it is clear that S is a self adjoint. We have to prove that S is injective. Let $f \in E$ and assume that $Sf = 0$. Then

$$0 = \varphi(Sf, f) = \sum_{k=1}^{m} |\varphi(f, f_k)|^2,$$

by the φ-frame condition $f = 0$. S is injective implies that S is surjective, but let us give direct proof. By Corollary 2.1, the φ-frame condition implies that $\text{span} \{ f_k \}_{k=1}^{m} = E$, so the φ-pre frame operator T is surjective. For $f \in E$ we can find $g \in E$ such that
\(Tg = f \). We can choose \(g \in N_{\frac{T}{T^*}} = R_{T^*} \), so it follows that \(R_S = R_{TT^*} = \mathcal{E} \). Thus \(S \) is surjective. Each \(f \in \mathcal{E} \) has the representation

\[
\sum_{k=1}^{m} \varphi(S^{-1}f, f_k) f_k.
\]

Since \(S \) is self adjoint, we get

\[
\sum_{k=1}^{m} \varphi(f, S^{-1}f_k) f_k.
\]

The second representation in (2.3) is obtained in the same way, hence \(f = S^{-1}Sf \).

THEOREM 2.2. Let \(\{f_k\}_{k=1}^{m} \) be a \(\varphi \)-frame for \(\mathcal{E} \) with \(\varphi \)-frame operator \(T \). Then if \(f \in \mathcal{E} \) also has the representation \(f = \sum_{k=1}^{m} c_k f_k \) for some scalar coefficients \(\{c_k\}_{k=1}^{m} \), then

\[
\sum_{k=1}^{m} |c_k|^2 = \sum_{k=1}^{m} |\varphi(f, T^{-1}f_k)|^2 + \sum_{k=1}^{m} |c_k + \varphi(f, T^{-1}f_k)|^2. \tag{2.4}
\]

PROOF. Suppose that \(f = \sum_{k=1}^{m} c_k f_k \). We can write

\[
\{c_k\}_{k=1}^{m} = \{c_k\}_{k=1}^{m} - \{\varphi(f, T^{-1}f_k)\}_{k=1}^{m} + \{\varphi(f, T^{-1}f_k)\}_{k=1}^{m}.
\]

By the choice of \(\{c_k\}_{k=1}^{m} \) we have

\[
\sum_{k=1}^{m} (c_k - \varphi(f, T^{-1}f_k)) f_k = 0
\]

i.e.,

\[
\{c_k\}_{k=1}^{m} - \{\varphi(f, T^{-1}f_k)\}_{k=1}^{m} \in N_S = R_{\frac{T}{T^*}},
\]

since

\[
\{\varphi(f, T^{-1}f_k)\}_{k=1}^{m} = \{\varphi(T^{-1}f, f_k)\}_{k=1}^{m} \in R_S.
\]

we obtain (2.4).

REMARK 2.2. If \(\{f_k\}_{k=1}^{m} \) is a \(\varphi \)-frame but not a basis, there exist non zero sequences \(\{d_k\}_{k=1}^{m} \) such that \(\sum_{k=1}^{m} d_k f_k = 0 \). Therefore \(f \in \mathcal{E} \) can be written

\[
f = \sum_{k=1}^{m} \varphi(f, T^{-1}f_k) f_k + \sum_{k=1}^{m} d_k f_k
\]

and

\[
= \sum_{k=1}^{m} (\varphi(f, T^{-1}f_k) + d_k) f_k
\]
showing that \(f \) has many representations as superpositions of the \(\varphi \)-frame elements.

Proposition 2.2. Let \(\{f_k\}_{k=1}^m \) be a basis for \(\mathcal{E} \). Then there exists a unique family \(\{g_k\}_{k=1}^m \) in \(\mathcal{E} \) such that

\[
f = \sum_{k=1}^m \varphi(f, g_k) f_k, \quad (\forall f \in \mathcal{E}).
\] (2.5)

Proof. The existence of a family \(\{g_k\}_{k=1}^m \) satisfying (2.5) follows from Theorem 2.1, also the uniqueness part is direct.

Remark 2.3. Applying (2.5) on a fixed element \(f_j \) and since \(\{f_k\}_{k=1}^m \) is a basis, we get \(\varphi(f_j, g_k) = \delta_{j,k} \) for all \(k = 1, 2, \ldots, m \).

Theorem 2.3. Let \(\{f_k\}_{k=1}^m \) be a \(\varphi \)-frame for subspace \(F \) of the vector space \(\mathcal{E} \). Then the \(\varphi \)-orthogonal projection of \(\mathcal{E} \) onto \(F \) is given by

\[
P_f = \sum_{k=1}^m \varphi(f, T^{-1} f_k) f_k.
\] (2.6)

Proof. It is enough to prove that if we define \(P \) by (2.6), then

\[
P_f = f \quad \text{for} \quad f \in F \quad \text{and} \quad P_f = 0 \quad \text{for} \quad f \in F^\perp.
\]

The first equation follows by Theorem 2.1, and the second by the fact that the range of \(T^{-1} \) equals \(F \) because \(T \) is a bijection on \(F \).

3 Continuous \(\varphi \)-Frames

In this section, we introduce the concept of continuous \(\varphi \)-frames, which is a partial extension of continuous frames. To prove our main result related to continuous \(\varphi \)-frames, we need the following essential definitions. Let \(I \) be a locally compact group, and \(\mathcal{E} \) be a vector space, and \(\varphi \) be a sesquilinear form on \(\mathcal{E} \). A function

\[
f : I \to \mathcal{E}
\]

is called a continuous \(\varphi \)-frame in \(\mathcal{E} \), if there are positive numbers \(A, B \), such that for all \(x \) in \(\mathcal{E} \)

\[
A \varphi(x, x) \leq \int_I |\varphi(x, f_i)|^2 \, di \leq B \varphi(x, x),
\] (3.1)

where \(di \) is a Haar measure on \(I \). The constants \(A \) and \(B \) are called the frame bounds. In this case, we define the corresponding frame operator as \(S : I \to I \) such that

\[
S(x) = \int_I \varphi(x, f_i) \, di.
\] (3.2)
Moreover, we can define the analysis operator as this $T : \mathcal{E} \to L^2(I)$ such that

$$x \to (\varphi(x, f_i))_{i \in I}. \tag{3.3}$$

The notation $(\varphi(x, f_i))_{i \in I}$ in (3.3) denotes the function in $L^2(I)$

$$i \to (\varphi(x, f_i))_{i \in I}.$$

It easy to prove that $T^* : L^2(I) \to \mathcal{E}$ which

$$g \to \int_I f_i g_i \, di,$$

and it implies that

$$S = T^* T.$$

THEOREM 3.1. Let I be a locally compact group, φ be a symmetric sesquilinear form on a vector space \mathcal{E}, and let $f : I \to \mathcal{E}$ be a φ-frame in \mathcal{E}, with frame bounds A and B. Then the operator S is a positive, self adjoint, invertible operator on \mathcal{E}, moreover

$$AI_{\mathcal{E}} \leq S \leq BI_{\mathcal{E}}.$$

PROOF. By definition, we can write

$$\varphi(Sx, x) = \varphi \left(\int_I \varphi(x, f_i) f_i \, di, x \right) = \int_I \varphi(\varphi(x, f_i) f_i, x) \, di$$

$$= \int_I \varphi(x, f_i) \varphi(f_i, x) \, di$$

$$= \int_I \varphi(x, f_i) \overline{\varphi(x, f_i)} \, di$$

$$= \int_I |\varphi(x, f_i)|^2 \, di.$$

Therefore from definition of frame bounds, we conclude that

$$A \varphi(x, x) \leq \varphi(Sx, x) \leq B \varphi(x, x)$$

which is equivalent to

$$AI_{\mathcal{E}} \leq S \leq BI_{\mathcal{E}}.$$

EXAMPLE 3.1. Let I be the positive real number, and \mathcal{E} be $L^2(R)$. Define $f : R^+ \to L^2(R)$ which

$$\alpha \to f_\alpha$$
where

\[f_\alpha(x) = e^{2\pi i \alpha x}. \]

Then it easy to show that the frame operator corresponding to the inner product of \(L^2(\mathbb{R}) \) is the identity on \(\mathcal{E} \). In other words, for any function \(f \)

\[f = \int_0^{+\infty} \varphi(f, f_\alpha) f_\alpha d\alpha \]

or equivalently

\[f(x) = \int_0^{+\infty} \left(\int_{-\infty}^{+\infty} f(x) \overline{f_\alpha(x)} dx \right) f_\alpha(x) d\alpha \]

or

\[f(x) = \int_0^{+\infty} \left(\int_{-\infty}^{+\infty} f(x) e^{-2\pi i \alpha x} dx \right) e^{2\pi i \alpha x} d\alpha. \]

This is the Fourier integral for the function \(f \).

EXAMPLE 3.2. In the previous, let \(I \) be the set of all positive integers, then we have

\[f = \sum_{0}^{\infty} \varphi(f, f_n) f_n \]

or

\[f(x) = \sum_{0}^{\infty} \left(\int_{-\infty}^{+\infty} f(x) e^{-2\pi i \alpha x} dx \right) e^{2\pi i \alpha x} d\alpha. \]

which is the Fourier series for the function \(f \).

Example 3.2 shows that the Fourier system is a continuous \(\varphi \)-frame, which has a discrete sub frame, but not in a same measure.

REMARK 3.1. In general, it is not necessary for \(I \) to be a group, it is enough that \(I \) is a subset of a locally compact group with a suitable measure. As we see in the examples, it is important to define an integral or summation on \(I \).

4 Applications

As an application of previous sections, we prove the following inequalities and by using the model technique of Balan et al. [2, 3] and Gavruta [15], we obtain an analogue, called Parseval’s identity of \(\varphi \)-frames in normed spaces.

THEOREM 4.1. Let \(\{f_i\}_{i \in I} \) be a \(\varphi \)-frame for a vector space \(\mathcal{E} \) with frame bounds \(A, B \). Let \(J \subset I \), so that \(\{f_i\}_{i \in J} \) has Bessel bound \(B(J) < A \). Then \(\{f_i\}_{i \in J} \) is a \(\varphi \)-frame for \(\mathcal{E} \).
Properties and Related Inequalities Of φ-frames in Normed Spaces

PROOF. Since $\{f_i\}_{i \in J^c}$ has B as a Bessel bound, we only need to check its lower frame bound. For this just compute for any $f \in \mathcal{E}$

$$\sum_{i \in J^c} |\varphi(f, f_i)|^2 = \sum_{i \in I} |\varphi(f, f_i)|^2 - \sum_{i \in J} |\varphi(f, f_i)|^2$$

$$\geq A\Phi(f) - B(J)\Phi(f) = (A - B(J))\Phi(f).$$

Since $A - B(J) > 0$, we deduce the desired result.

COROLLARY 4.1. Let $\{f_i\}_{i \in I}$ be a Parseval φ-frame for \mathcal{E} and $J \subset I$. In order for $\{f_i\}_{i \in J}$ to be a φ-frame for \mathcal{E} is necessary and sufficient that $B(J^c) < 1$. In this case, the optimal lower frame bound for $\{f_i\}_{i \in J}$ is $1 - B(J^c)$.

PROOF. For any $f \in \mathcal{E}$ we have

$$\sum_{i \in J} |\varphi(f, f_i)|^2 = \sum_{i \in I} |\varphi(f, f_i)|^2 - \sum_{i \in J^c} |\varphi(f, f_i)|^2$$

$$\geq \Phi(f) - B(J^c)\Phi(f) = (1 - B(J^c))\Phi(f).$$

It is easy to see that the inequality above is optimal, hence the proof.

The following result can be stated as well.

THEOREM 4.2. Assume that φ is a bounded positive sesquilinear form. If $U, V \in \mathcal{L}(\mathcal{E})$ are φ-self adjoint operators satisfying $U + V = 1_\mathcal{E}$, then for all $f \in \mathcal{E}$ we have

$$\varphi(Uf, f) + \Phi(Vf) = \varphi(Vf, f) + \Phi(Vf) \geq \frac{3}{4}\Phi(f).$$

PROOF. We have

$$\varphi(Uf, f) + \Phi(Vf) = \varphi(Uf, f) + \varphi(Vf, Vf)$$

$$= \varphi((I_\mathcal{E} - V)f, f) + \varphi(V^2f, f)$$

$$= \varphi((V^2 - V + I_\mathcal{E})f, f)$$

$$= \varphi(Vf, f) + \varphi(Uf, Uf) + \varphi((I_\mathcal{E} - V)^2f, f)$$

$$= \varphi((V^2f - V + I_\mathcal{E})f, f)$$

$$= \varphi \left(\left(V - \frac{1}{2}I_\mathcal{E} \right)^2 + \frac{3}{4}I_\mathcal{E} \right) f, f \right)$$

$$\geq \frac{3}{4}\Phi(f).$$

This completes the proof of Theorem 4.2.

REMARK 4.1. We consider now $\{f_i\}_{i \in I}$, a φ-frame for \mathcal{E} with S its frame operator and $\{\tilde{f}_i\}_{i \in I}$ its canonical dual frame and $J \subset I$. We have

$$S_J + S_{J^c} = S,$$
hence
\[S^{-\frac{1}{2}} S J S^{-\frac{1}{2}} + S^{-\frac{1}{2}} S J f S^{-\frac{1}{2}} = 1_{\mathcal{F}}. \]

PROOF. If in the Theorem 4.2 we take \(U = S^{-\frac{1}{2}} S J S^{-\frac{1}{2}} \), \(V = S^{-\frac{1}{2}} S J f S^{-\frac{1}{2}} \) and \(S f \) instead of \(f \), we get
\[\varphi \left(S^{-\frac{1}{2}} S J f, S f \right) + \Phi \left(S^{-\frac{1}{2}} S J f, S f \right) = \varphi \left(S^{-\frac{1}{2}} S J f, S f \right) \]
\[\geq \frac{3}{4} \Phi \left(S f \right), \]
or
\[\varphi \left(S J f, f \right) + \varphi \left(S^{-\frac{1}{2}} S J f, S^{-\frac{1}{2}} S J f \right) = \varphi \left(S J f, f \right) + \varphi \left(S^{-1} S J f, S J f \right) \]
\[\geq \frac{3}{4} \varphi \left(S f, f \right). \]

The following result also holds (see [15, Theorem 3.2] for the case of Hilbert space).

Theorem 4.3. Let \(\{f_i\}_{i \in I} \) be a \(\varphi \)-frame for \(\mathcal{F} \) and \(\{g_i\}_{i \in I} \) be an alternative dual of \(\{f_i\}_{i \in I} \). Then for all \(J \subset I \) and all \(f \in \mathcal{F} \), we have
\[\Re \sum_{i \in J} \varphi(f, g_i) \overline{\varphi(f, f_i)} + \Phi \left(\sum_{i \in J} \varphi(f, g_i) f_i \right) \]
\[= \Re \sum_{i \in J} \varphi(f, g_i) \overline{\varphi(f, f_i)} + \Phi \left(\sum_{i \in J} \varphi(f, g_i) f_i \right) \]
\[\geq \frac{3}{4} \Phi (f). \]

PROOF. For every \(J \subset I \) we define the operator \(L_J \) by
\[L_J f = \sum_{i \in J} \varphi(f, g_i) f_i. \]
By the Cauchy-Schwarz inequality it follows that this series converges unconditionally and \(L_J \in L(\mathcal{F}) \). Since \(L_J + L_{J^c} = I_\mathcal{F} \),
\[\varphi ((L_J L_J) f, f) + \frac{1}{2} \varphi ((L_J, L_{J^c}) f, f) = \varphi ((L_J L_{J^c}) f, f) + \frac{1}{2} \varphi ((L_J + L_{J^c}) f, f) \]
\[\geq \frac{3}{4} \Phi (f), \]
or
\[\Phi \left(\sum_{i \in J} \varphi(f, g_i) f_i \right) + \frac{1}{2} \left(\varphi(L_{J^c} f, f) + \varphi(L_J f, f) \right) \]
\[= \Phi \left(\sum_{i \in J^c} \varphi(f, g_i) f_i \right) + \frac{1}{2} \left(\varphi(L_J f, f) + \varphi(L_J f, f) \right) \]
\[\geq \frac{3}{4} \Phi (f). \]
To prove Theorem 4.4, we need the following lemma.

Lemma 4.1. If S, T are operators on \mathcal{E} satisfying $S + T = I$, then $S - T = S^2 - T^2$.

Proof. Easy computation and simplification yield

$$S - T = S - (I - S) = 2S - I = S^2 - (I - 2S + S^2) = S^2 - (I - S)^2 = S^2 - T^2.$$

Theorem 4.4. Let $\{f_i\}_{i \in I}$ be a φ-frame for \mathcal{E} with canonical frame $\{\tilde{f}_i\}_{i \in I}$. Then for all $J \subset I$ and for all $f \in \mathcal{E}$ we have

$$\sum_{i \in J} |\varphi(f, f_i)|^2 - \sum_{i \in I} |\varphi(S_J f, \tilde{f}_i)|^2 = \sum_{i \in J^c} |\varphi(f, f_i)|^2 - \sum_{i \in I} |\varphi(S_{J^c} f, \tilde{f}_i)|^2.$$

Proof. Let S denote the frame operator for $\{f_i\}_{i \in I}$. Since $S = S_J + S_{J^c}$, it follows that $I = S^{-1}S_J + S^{-1}S_{J^c}$. Applying Lemma 4.1 to the two operators $S^{-1}S_J$ and $S^{-1}S_{J^c}$ yields

$$S^{-1}S_J - S^{-1}S_JS^{-1}S_J = S^{-1}S_{J^c}S^{-1}S_{J^c}. \quad (4.1)$$

Further, for every $f, g \in \mathcal{E}$ we obtain

$$\varphi(S^{-1}S_J f, g) - \varphi(S^{-1}S_J S^{-1}S_J f, g) = \varphi(S_J f, S^{-1}g) - \varphi(S^{-1}S_J f, S_J S^{-1}g). \quad (4.2)$$

Now, we choose g to be $g = Sf$. Then we can continue the equality (4.2) in the following as

$$\varphi(S_J f, f) - \varphi(S^{-1}S_J f, S_J f) = \sum_{i \in I} |\varphi(f, f_i)|^2 - \sum_{i \in I} |\varphi(S_J f, \tilde{f}_i)|^2.$$

Setting equality (4.2) equal to the corresponding equality for J^c and using (4.1), we finally get

$$\sum_{i \in J} |\varphi(f, f_i)|^2 - \sum_{i \in I} |\varphi(S_J f, \tilde{f}_i)|^2 = \sum_{i \in J^c} |\varphi(f, f_i)|^2 - \sum_{i \in I} |\varphi(S_{J^c} f, \tilde{f}_i)|^2.$$

Proposition 4.1. Let $\{f_i\}_{i \in I}$ be a Parseval φ-frame for \mathcal{E}. For every subset $J \subset I$ and every $f \in \mathcal{E}$, we have

$$\sum_{i \in J} |\varphi(f, f_i)|^2 - \Phi(\varphi(f, f_i) f_i) = \sum_{i \in J^c} |\varphi(f, f_i)|^2 - \Phi\left(\sum_{i \in J^c} \varphi(f, f_i) f_i\right).$$
PROOF. Let \(\{ \tilde{f}_i \}_{i \in I} \) denote the dual frame of \(\{ f_i \}_{i \in I} \). Since \(\{ f_i \}_{i \in I} \) is a Parseval \(\phi \)-frame, its frame operator equal identity operator and hence \(\tilde{f}_i = f_i \) for all \(i \in I \).

Employing Theorem 4.4 and the fact that \(\{ f_i \}_{i \in I} \) is a Parseval \(\phi \)-frame yields

\[
\sum_{i \in J} |\varphi (f, f_i)|^2 - \Phi \left(\sum_{i \in J} \varphi (f, f_i) f_i \right) = \sum_{i \in J} |\varphi (f, f_i)|^2 - \Phi (S_J f) \\
= \sum_{i \in J} |\varphi (f, f_i)|^2 - \sum_{i \in I} |\varphi (S_J f, f_i)|^2 \\
= \sum_{i \in J} |\varphi (f, f_i)|^2 - \sum_{i \in I} |\varphi (S_J f, \tilde{f}_i)|^2 \\
= \sum_{i \in J^c} |\varphi (f, f_i)|^2 - \sum_{i \in I} |\varphi (S_J f, \tilde{f}_i)|^2 \\
= \sum_{i \in J^c} |\varphi (f, f_i)|^2 - \Phi (S_J f) \\
= \sum_{i \in J^c} |\varphi (f, f_i)|^2 - \Phi \left(\sum_{i \in J^c} \varphi (f, f_i) f_i \right).
\]

Acknowledgment. The authors are grateful to the referee for many useful suggestions.

References

