ERRATUM TO “NEW APPROACH FOR CLOSURE SPACES BY RELATIONS”

AMR ZAKARIA

Abstract. In this note, an alleged lemma 3.6 stated in [2] is incorrect in general, by giving an example. In addition to this point, if the closure space studied in [2] was T_1 space, then it is the discrete space $(X, P(X))$. As a consequence, Proposition 6.4, Corollary 6.4, Proposition 6.5, Corollary 6.6, Proposition 6.6 and Corollary 6.7 mentioned in [2] are trivially satisfied without proof.

1. Introduction

Definition 1. [1] Let X be a nonempty set and R be a binary relation on X. The minimal neighbourhood of $x \in X$ is defined as:

$$\langle x \rangle_R = \cap \{pR : x \in pR\},$$

where $pR = \{q \in X : (p, q) \in R\}$.

Definition 2. [2] Let R be a binary relation on a nonempty set X. The closure operation on X, denoted by cl_R, defined as follows:

$$cl_R(A) = A \cup \{x \in X : \langle x \rangle_R \cap A \neq \emptyset\}.$$

Theorem 1. [2] Let R be a binary relation on a nonempty set X. Then a closure space (X, cl_R) is an Alexandrov topological space.

Lemma 1. [3] Let (X, τ) be an Alexandrov T_1-space. Then (X, τ) is the discrete space; that is, $\tau = P(X)$.

Lemma 3.6 in [2] claimed that for any binary relation R on X the following implication has been satisfied:

$$x \in cl_R(\{y\}) \Rightarrow y \in \langle x \rangle_R.$$

This assertion is wrong in general by giving example.

2010 Mathematics Subject Classification. 54F05; 54A05.
Key words and phrases. Closure space; Alexandrov space; minimal neighbourhood.
2. Main results

The following example shows that the sufficient condition of Lemma 3.6 in [2] is incorrect in general.

Example 1. Let \(X = \{a, b, c, d\} \) and \(R = \{(a, a), (a, b), (b, c), (d, a)\} \). Then \(\langle a \rangle_R = \{a\}, \langle b \rangle_R = \{a, b\}, \langle c \rangle_R = \{c\} \) and \(\langle d \rangle_R = \emptyset \). It's clear that \(d \in \text{cl}_R(\{d\}) = \{d\} \), but \(d \notin \langle d \rangle_R \).

Proposition 1. Let \(R \) be a binary relation on a nonempty set \(X \). Then any closure space \((X, \text{cl}_R) \) which is \(T_1 \) is the discrete space \((X, P(X)) \).

Proof. The result is a direct consequence of Theorem 1 and Lemma 1. \(\square \)

Remark 1. It should be noted that Proposition 1 implies that Proposition 6.4, Corollary 6.4, Proposition 6.5, Corollary 6.6, Proposition 6.6 and Corollary 6.7 stated in [2] are trivially satisfied without proof.

REFERENCES

Received September 23, 2016.

PERMANENT ADDRESS

DEPARTMENT OF MATHEMATIC,

FACULTY OF EDUCATION,

AIN SHAMS UNIVERSITY,

ROXY 11341, CAIRO, EGYPT

CURRENT ADDRESS

INSTITUTE OF MATHEMATICS,

UNIVERSITY OF DEBRECEN,

H-4002 DEBRECEN, PF. 400, HUNGARY,

E-mail address: amr.zakaria@edu.asu.edu.eg