MODULES OVER GROUP RINGS OF LOCALLY FINITE GROUPS WITH FINITENESS RESTRICTIONS

OLGA DASHKOVA

Abstract. We study an R_G-module A, where R is a ring, $A/C_A(G)$ is infinite, $C_G(A) = 1$, G is a group. Let $\mathcal{L}_{\text{inf}}(G)$ be the system of all subgroups $H \leq G$ such that the quotient modules $A/C_A(H)$ are infinite. We investigate an R_G-module A such that $\mathcal{L}_{\text{inf}}(G)$ satisfies either the weak minimal condition or the weak maximal condition as an ordered set. It is proved that if G is a locally finite group then either G is a Chernikov group or G is a finite-finitary group of automorphisms of A.

1. Introduction

Important finiteness conditions in group theory are the weak minimal condition on subgroups and the weak maximal condition on subgroups. Let G be a group, \mathcal{M} be a set of subgroups of G. G is said to satisfy the weak minimal condition on \mathcal{M}-subgroups if for a descending series of subgroups $G_0 \geq G_1 \geq G_2 \geq \cdots \geq G_n \geq G_{n+1} \geq \cdots$, $G_n \in \mathcal{M}$, $n \in \mathbb{N}$, there exists the number $m \in \mathbb{N}$ such that an index $|G_n : G_{n+1}|$ is finite for any $n \geq m$ [11]. Similarly G is said to satisfy the weak maximal condition on \mathcal{M}-subgroups if for an ascending series of subgroups $G_0 \leq G_1 \leq G_2 \leq \cdots \leq G_n \leq G_{n+1} \leq \cdots$, $G_n \in \mathcal{M}$, $n \in \mathbb{N}$, there exists the number $m \in \mathbb{N}$ such that an index $|G_n : G_{n+1}|$ is finite for any $n \geq m$ [1].

These finiteness conditions were applied to investigate infinite dimensional linear periodic groups [9]. Also similar finiteness conditions were considered in [2].

Let A be an R_G-module, R be an associative ring, G be a group. G is a finite-finitary group of automorphisms of A if $C_G(A) = 1$ and $A/C_A(g)$ is finite for any $g \in G$ [10]. Finite-finitary groups of automorphisms of A with additional restrictions were studied in [10].

2010 Mathematics Subject Classification. 20F19, 20H25.
Key words and phrases. group ring, locally finite group, locally solvable group.
Let $\mathcal{L}_{nf}(G)$ be the system of all subgroups H of G such that $A/C_A(H)$ is infinite. Previously, we studied an RG-module A with some restrictions on subgroups of $\mathcal{L}_{nf}(G)$ [4, 3, 5].

In this paper we continue these investigations. We say that G satisfies the condition $W_{\min-nf}$ if G satisfies the weak minimal condition on M-subgroups where $M = \mathcal{L}_{nf}(G)$ and G satisfies the condition $W_{\max-nf}$ if G satisfies the weak maximal condition on M-subgroups where $M = \mathcal{L}_{nf}(G)$.

Next, we consider an RG-module A with $C_G(A) = 1$. We investigate an RG-module A such that G satisfies either $W_{\min-nf}$ or $W_{\max-nf}$. Main results of the paper are Theorem 1 and Theorem 2.

2. Preliminary results

Lemma 1. Let A be an RG-module, R be an associative ring. Then the following conditions hold:

1. if $L \leq H \leq G$ and $A/C_A(H)$ is finite then $A/C_A(L)$ is finite also;
2. if $L, H \leq G$, $A/C_A(L)$ and $A/C_A(H)$ are finite then $A/C_A([L,H])$ is finite also.

Corollary 1. Let A be an RG-module, R be an associative ring, $FFD(G)$ be the set of all elements $x \in G$ such that $A/C_A(x)$ is finite. Then $FFD(G)$ is a normal subgroup of G.

Proof. By Lemma 1 (2) $FFD(G)$ is a subgroup of G. Since $C_A(x^g) = C_A(x)g$ for each $x, g \in G$ then $FFD(G)$ is a normal subgroup of G. □

Lemma 2. Let A be an RG-module, R be an associative ring, H be a subgroup of G. Suppose that H contains a normal subgroup K such that $A/C_A(K)$ is infinite. Then the following conditions hold:

1. if G satisfies $W_{\min-nf}$ then H/K satisfies the weak condition of minimality on subgroups;
2. if G satisfies $W_{\max-nf}$ then H/K satisfies the weak condition of maximality on subgroups.

Lemma 3. Let A be an RG-module, R be an associative ring, L, K and H be subgroups of G with the the following properties:

1. K is a normal subgroup of L;
2. K and L are H-invariant subgroups;
3. $L/K \cap HK/K = \langle 1 \rangle$;
4. $L/K = \text{Dr}_{n \in \mathbb{N}} L_n/K$, $L_n/K \neq \langle 1 \rangle$ is an H-invariant subgroup for any $n \in \mathbb{N}$.

Then the following conditions hold:

1. if G satisfies $W_{\max-nf}$ then $A/C_A(HL)$ is finite;
2. if G satisfies $W_{\min-nf}$ then $A/C_A(HK)$ is finite.

Proof. There are two infinite subsets Σ and Δ of \mathbb{N} such that $\Sigma \cup \Delta = \mathbb{N}$, $\Sigma \cap \Delta = \emptyset$. Since Δ is infinite then there is an infinite strongly ascending...
series of subsets of Δ

$$\Delta(1) \subset \Delta(2) \subset \cdots \subset \Delta(k) \subset \cdots.$$ Also there is strongly descending series of subsets of Δ

$$\Delta^*(1) \supset \Delta^*(2) \supset \cdots \supset \Delta^*(k) \supset \cdots,$$
such that the sets $\Delta(k+1) \setminus \Delta(k)$ and $\Delta^*(k) \setminus \Delta^*(k+1)$ are infinite for any $n \in \mathbb{N}$. Let

$$D_k/K = Dr_{t \in \Sigma \cup \Delta(k)} L_t/K$$

and

$$D^*_k/K = Dr_{t \in \Sigma \cup \Delta^*(k)} L_t/K.$$ At first we consider the strongly ascending series of subgroups

$$HD_1 < HD_2 < \cdots < HD_k < \cdots.$$

$|HD_{k+1} : HD_k|$ are infinite by construction. If G satisfies $W_{\text{max-nf}}$ then there is $m \in \mathbb{N}$ such that $A/C_A(HD_m)$ is finite. Since $\langle H, L_t | t \in \Sigma \rangle \leq HD_m$ then $A/C_A(\langle H, L_t | t \in \Sigma \rangle)$ is finite by Lemma 1. Similarly we prove that $A/C_A(\langle H, L_t | t \in \Delta \rangle)$ is finite.

Since $\Sigma \cup \Delta = \mathbb{N}$ we obtain

$$\langle \langle H, L_t | t \in \Delta \rangle, \langle H, L_t | t \in \Sigma \rangle \rangle = \langle H, L_t | t \in \Sigma \cup \Delta \rangle = HL.$$ By Lemma 1 $A/C_A(HL)$ is finite.

Likewise we can construct the strongly descending series of subgroups

$$HD^*_1 > HD^*_2 > \cdots > HD^*_k > \cdots,$$
such that $|HD^*_k : HD^*_k+1|$ are infinite. If G satisfies $W_{\text{min-nf}}$ then there is $m \in \mathbb{N}$ such that $A/C_A(HD^*_m)$ is finite. Since $HK \leq HD^*_m$ then $A/C_A(HK)$ is finite by Lemma 1. □

Corollary 2. Let A be an $\mathbf{R}G$-module, \mathbf{R} be an associative ring, L, K and H be subgroups of G with the the following properties:

(i) K is a normal subgroup of L;

(ii) K and L are H-invariant subgroups;

(iii) $L/K = Dr_{n \in \mathbb{N}} L_n/K$ where $L_n/K \neq \langle 1 \rangle$ is an H-invariant subgroup for any $n \in \mathbb{N}$;

(iv) the set $\mathbb{N} \setminus \text{Supp}(L/K \cap HK/K)$ is infinite.

If G satisfies either $W_{\text{min-nf}}$ or $W_{\text{max-nf}}$ then $A/C_A(HK)$ is finite. In particular $A/C_A(H)$ is finite.

Proof. Let $\Delta = \mathbb{N} \setminus \text{Supp}(L/K \cap HK/K)$ and $T/K = Dr_{n \in \Delta} L_n/K$. Then $T/K \cap HK/K = \langle 1 \rangle$. We apply Lemma 3. □

Corollary 3. Let A be an $\mathbf{R}G$-module, \mathbf{R} be an associative ring, L, K and H be subgroups of G with the the following properties:

(i) K is a normal subgroup of L;

(ii) K and L are H-invariant subgroups;
(iii) \(L/K = \text{Dr}_{n \in \mathbb{N}} L_n/K, L_n/K \neq \langle 1 \rangle \) is an \(H \)-invariant subgroup for any \(n \in \mathbb{N} \).

If \(G \) satisfies either \(W_{\text{min-nf}} \) or \(W_{\text{max-nf}} \) then \(A/C_A(\langle h \rangle K) \) is finite for any \(h \in H \). In particular \(H \leq \text{FFD}(G) \).

Proof. Let \(h \in H \). Since \(L_n/K \) is an \(H \)-invariant subgroup for any \(n \in \mathbb{N} \) then \(L_n/K \) is an \(\langle h \rangle \)-invariant subgroup for any \(n \in \mathbb{N} \). In particular the set \(\text{Supp}(\langle h \rangle K/K \cap L/K) \) is finite. Then \(A/C_A(\langle h \rangle K) \) is finite by Corollary 2. \(\square \)

3. Main results

Obviously that a Chernikov group satisfies both the weak minimal condition on subgroups and the weak maximal condition on subgroups. It follows that if \(A \) is an \(R \mathbb{G} \)-module and \(G \) is Chernikov then \(G \) satisfies both \(W_{\text{min-nf}} \) and \(W_{\text{max-nf}} \).

Lemma 4. Let \(A \) be an \(R \mathbb{G} \)-module, \(R \) be an associative ring. Suppose that \(G \) satisfies either \(W_{\text{min-nf}} \) or \(W_{\text{max-nf}} \). Let \(K \) and \(H \) be subgroups of \(G \) such that \(K \) is a normal subgroup of \(H \) and \(H/K \) is an infinite elementary abelian \(p \)-group for some prime \(p \). Suppose that \(K \) and \(H \) are \(\langle g \rangle \)-invariant for some \(g \in G \). If \(g^k \in C_G(\langle h \rangle K) \) for some \(k \in \mathbb{N} \) then \(g \in \text{FFD}(G) \).

Proof. Let \(M = H/K \). We take \(1 \neq b_1 \in M \). Put \(B_1 = \langle b_1 \rangle \). Since \(g \) induces the automorphism of finite order on \(M \) then \(B_1 \) is finite. \(M = B_1 \times C_1 \) is valid for some subgroup \(C_1 \).

Let

\[\{C_1^\sigma | y \in \langle g \rangle \} = \{U_1, \ldots, U_m\}. \]

It follows that the \(\langle g \rangle \)-invariant subgroup

\[D_1 = U_1 \cap \cdots \cap U_m \]

has finite index in \(M \). Let \(1 \neq b_2 \in D_1 \) and \(B_2 = \langle b_2 \rangle \). Then \(\langle B_1, B_2 \rangle = B_1 \times B_2 \). As before we conclude that \(M = (B_1 \times B_2) \times C_2 \) for some subgroup \(C_2 \). Similarly we can construct the infinite set \(\{B_n | n \in \mathbb{N} \} \) of non-trivial \(\langle g \rangle \)-invariant subgroups such that \(\langle B_n | n \in \mathbb{N} \rangle = \text{Dr}_{n \in \mathbb{N}} B_n \). By Corollary 3 we have that \(g \in \text{FFD}(G) \). \(\square \)

Let \(\pi(G) \) be the set of all prime divisors of orders of elements of \(G \).

Corollary 4. Let \(A \) be an \(R \mathbb{G} \)-module, \(R \) be an associative ring. Suppose that \(G \) satisfies either \(W_{\text{min-nf}} \) or \(W_{\text{max-nf}} \). Let \(K \) and \(H \) are subgroups of \(G \) such that \(K \) is a normal subgroup of \(H \), \(H/K \) is a periodic almost locally solvable group. If \(H/K \) is not Chernikov then \(H \leq \text{FFD}(G) \).

Proof. Let \(L/K \) be a locally solvable normal subgroup of \(H/K \) of finite index. Since \(H/K \) is not Chernikov then \(L/K \) is not Chernikov too. Let \(g \) be an element of \(H \). Then \(L/K \) contains an abelian \(\langle g \rangle \)-subgroup \(C/K \) which is not Chernikov [12]. If the set \(\pi(C/K) \) is infinite then \(g \in \text{FFD}(G) \) by Corollary
3. If \(\pi(C/K) \) is finite then there is the prime \(p \) such that Sylov \(p \)-subgroup \(P/K \) of \(C/K \) is not Chernikov. It follows that the lower layer \(B/K \) of \(P/K \) is infinite. Therefore \(L/K \) contains a \(\langle g \rangle \)-invariant infinite elementary abelian subgroup \(B_1/K \). Then \(g \in FFD(G) \) by Lemma 4.

Corollary 5. Let \(A \) be an \(RG \)-module, \(R \) be an associative ring. Suppose that \(G \) satisfies either \(W_{\text{min-nf}} \) or \(W_{\text{max-nf}} \). Let \(K \) and \(H \) be subgroups of \(G \) such that \(K \) is a normal subgroup of \(H \), \(H/K \) is a locally finite group. If \(H/K \) is not Chernikov then \(H \) is an almost locally solvable group \([6]\) and \(g \in FFD(G) \) by Corollary 4. We have that \(H \) is solvable.

It follows that Theorem 1 is valid.

Theorem 1. Let \(A \) be an \(RG \)-module, \(R \) be an associative ring, \(G \) be a locally finite group. If \(G \) satisfies either \(W_{\text{min-nf}} \) or \(W_{\text{max-nf}} \) then either \(G \) is a Chernikov group or \(G \) is a finite-finitary group of automorphisms of \(A \).

Lemma 5. Let \(A \) be a \(RG \)-module, \(R \) be an associative ring, \(G \) be a locally solvable group. Suppose that \(A/C_A(G) \) is finite. Then \(G \) is almost abelian.

Proof. Let \(C = C_A(G) \). Then \(A \) has the series of \(RG \)-submodules \(\langle 0 \rangle \leq C \leq A \), where \(A/C \) is a finite \(R \)-module. Since \(G \leq C_G(C) \) then \(G/C_G(C) \) is trivial. Hence, \(G/C_G(A/C) \) is finite.

Let \(H = C_G(C) \cap C_G(A/C) \). Each element of \(H \) acts trivially on every factor of the series \(\langle 0 \rangle \leq C \leq A/C \). By Kaluzhnin Theorem (p. 144 [7]) \(H \) is abelian. By Remak’s Theorem

\[
G/H \leq G/C_G(C) \times G/C_G(A/C).
\]

It follows that \(G/H \) is finite. Then \(G \) is an almost abelian group.

Let \(G_{\Sigma} \) be the intersection of all normal subgroups \(K \) of \(G \) such that \(G/K \) is solvable. If \(G \) is a solvable group then we denote the step of solvability of \(G \) by \(s(G) \).

Theorem 2. Let \(A \) be an \(RG \)-module, \(R \) be an associative ring, \(G \) be a locally solvable periodic group. If \(G \) satisfies either \(W_{\text{min-nf}} \) or \(W_{\text{max-nf}} \) then \(G/G_{\Sigma} \) is solvable.

Proof. Otherwise \(H = G/G_{\Sigma} \) is unsolvable. Let \(F_1 \) be a finite subgroup of \(H \). Since \(H \) is approximated by solvable subgroups then there is a normal subgroup \(K_1 \) of \(H \) such that \(F_1 \cap K_1 = \langle 1 \rangle \) and \(H/K_1 \) is solvable. It follows that \(K_1 \) is unsolvable. Therefore the steps of solvability of finite subgroups of \(K_1 \) not limited by the number. Then \(K_1 \) contains a finite subgroup \(D_1 \) such
that \(s(F_1) < s(D_1) \). Since \(F_1 \) and \(D_1 \) are finite then they are solvable. Let \(F_2 = D_1^{F_1} \). Then \(F_2 \) is a finite \(F_1 \)-invariant subgroup such that \(s(F_1) < s(F_2) \). Since \(F_1 F_2 \) is finite there is a normal subgroup \(K_2 \) of \(H \) such that \(F_1 F_2 \cap K_2 = \langle 1 \rangle \) and \(H/K_2 \) is solvable. Since \(K_2 \) is unsolvable then we can choose a finite \(F_1 F_2 \)-invariant subgroup \(F_3 \) of \(K_2 \) such that \(s(F_2) < s(F_3) \). Continuing our reasoning, we construct the strongly ascending series of finite subgroups
\[
F_1 < F_1 F_2 < \cdots < F_1 F_2 \cdots F_n < \cdots
\]
with the the following properties:

(i) \(F_n \) is an \(F_j \)-invariant subgroup for \(j < n \);
(ii) \(s(F_j) < s(F_n) \) for \(j < n \);
(iii) \(F_1 F_2 \cdots F_n \cap \langle F_j \mid j > n \rangle = \langle 1 \rangle \) for any \(n \in \mathbb{N} \).

It follows that \(\langle F_j \mid j \in \Delta \rangle \) is decomposed in the direct product of \(F_j, j \in \Delta \),
for an infinite subset \(\Delta \) of \(\mathbb{N} \). Therefore \(\langle F_j \mid j \in \Delta \rangle \) is unsolvable.

At first we suppose that \(G \) satisfies \(W_{\text{min-nf}} \). There is an infinite strictly descending series of subsets
\[
\mathbb{N} \supset \Delta(1) \supset \Delta(1) \supset \cdots \supset \Delta(k) \supset \cdots
\]
such that \(\Delta(k) \setminus \Delta(k+1) \) is infinite for any \(k \in \mathbb{N} \). Let \(L_k = \langle F_j \mid j \in \Delta(k) \rangle \) for any \(k \in \mathbb{N} \). We obtain the strongly descending series of subgroups \(L_1 > L_2 > \cdots > L_k > \cdots \) of \(H \). Let \(M_k \) be the preimage of \(L_k \) in \(G \). Then \(M_1 > M_2 > \cdots > M_k > \cdots \) is the strongly descending series of subgroups of
\(G \) such that \(|M_k : M_{k+1}| \) are infinite. Hence there is \(t \in \mathbb{N} \) such that \(A/C_A(M_t) \) is finite. \(M_t \) is solvable by Lemma 5. It follows that \(L_t = M_t/G_{\Delta} \) is solvable. Previously, we proved that \(L_t = \langle F_j \mid j \in \Delta(t) \rangle \) is unsolvable. Contradiction.

If \(G \) satisfies \(W_{\text{max-nf}} \) we construct an infinite strictly ascending series of subsets of \(\mathbb{N} \) and conduct similar reasoning.

When writing the paper the author used the methods of [9].

References

Received May 2, 2016.