ON S-3 LIKE FOUR-DIMENSIONAL FINSLER SPACES

M. K. GUPTA AND P. N. PANDEY

Abstract. In 1977, M. Matsumoto and R. Miron [9] constructed an orthonormal frame for an \(n \)-dimensional Finsler space, called ‘Miron frame’. The present authors [1, 2, 3, 10, 11] discussed four-dimensional Finsler spaces equipped with such frame. M. Matsumoto [7, 8] proved that in a three-dimensional Berwald space, all the main scalars are \(h \)-covariant constants and the \(h \)-connection vector vanishes. He also proved that in a three-dimensional Finsler space satisfying T-condition, all the main scalars are functions of position only and the \(v \)-connection vector vanishes [6, 7]. The purpose of the present paper is to generalize these results for an S-3 like four-dimensional Finsler space.

1. Preliminaries

Let \(M^4 \) be a four-dimensional smooth manifold and \(F^4 = (M^4, L) \) be a four-dimensional Finsler space equipped with a metric function \(L(x, y) \) on \(M^4 \). The normalized supporting element, the metric tensor, the angular metric tensor and Cartan tensor are defined by
\[
l_i = \dot{\partial}_i L, \ g_{ij} = \frac{1}{2} \dot{\partial}_i \dot{\partial}_j L^2, \ h_{ij} = L \ddot{\partial}_i \dot{\partial}_j L \text{ and } C_{ijk} = \frac{1}{2} \ddot{\partial}_k g_{ij},
\]
respectively. The torsion vector \(C^i \) is defined by \(C^i = C^i_{jk} g^{jk} \). Throughout this paper, we use the symbols \(\dot{\partial}_i \) and \(\partial_i \) for \(\partial / \partial y^i \) and \(\partial / \partial x^i \) respectively. The Cartan connection in the Finsler space is given as \(\Gamma = (F^i_{jk}, G^i_j, C^i_{jk}) \). The \(h \)- and \(v \)-covariant derivatives of a covariant vector \(X_i(x, y) \) with respect to the Cartan connection are given by
\[
X_{ij} = \partial_j X_i - (\dot{\partial}_h X_i) G^h_j - F^r_{ij} X_r,
\]
and
\[
X_{i|j} = \dot{\partial}_j X_i - C^r_{ij} X_r.
\]
The Miron frame for a four-dimensional Finsler space is constructed by the unit vectors \((e_1^i, e_2^i, e_3^i, e_4^i)\). The first vector \(e_1^i\) is the normalized supporting element \(l^i\) and the second \(e_2^i\) is the normalized torsion vector \(m^i = C^i / \tilde{c}\), where \(\tilde{c}\) is the length of the torsion vector \(C^i\). The third \(e_3^i = n^i\) and the fourth \(e_4^i = p^i\) are constructed by the method of Matsumoto and Miron [9]. With respect to this frame, the scalar components of an arbitrary tensor \(T_j^i\) are defined by

\[
T_{\alpha\beta} = T_j^i e_\alpha^j e_\beta^i.
\]

From this, we get

\[
T_j^i = T_{\alpha\beta} e_\alpha^i e_\beta^j,
\]

where summation convention is also applied to Greek indices. The scalar components of the metric tensor \(g_{ij}\) are \(\delta_{\alpha\beta}\). Therefore we get

\[
g_{ij} = l_i l_j + m_i n_j + n_i m_j + p_i p_j.
\]

Let \(H_{\alpha\beta\gamma}\) and \(V_{\alpha\beta\gamma} / L\) be scalar components of the \(h\)- and \(v\)-covariant derivatives \(e_\alpha^i|_j\) and \(e_\alpha^i|_j\) respectively of the vectors \(e_\alpha^i\), then

\[
e_\alpha^i|_j = H_{\alpha\beta\gamma} e_\beta^i e_\gamma^j,
\]

and

\[
Le_\alpha^i|_j = V_{\alpha\beta\gamma} e_\beta^i e_\gamma^j.
\]

\(H_{\alpha\beta\gamma}\) and \(V_{\alpha\beta\gamma}\) are called \(h\)- and \(v\)-connection scalars respectively and are positively homogeneous of degree 0 in \(y\).

Orthogonality of the Miron frame yields

\[
H_{\alpha\beta\gamma} = -H_{\beta\alpha\gamma} \quad \text{and} \quad V_{\alpha\beta\gamma} = -V_{\beta\alpha\gamma}.
\]

Also we have \(H_{1\beta\gamma} = 0\) and \(V_{1\beta\gamma} = \delta_{\beta\gamma} - \delta_1 \delta_{\beta\gamma} [7]\).

Now we define Finsler vector fields:

\[
h_i = H_{2\beta\gamma} e_{\gamma^i}, \quad j_i = H_{4\beta\gamma} e_{\gamma^i}, \quad k_i = H_{3\beta\gamma} e_{\gamma^i},
\]

and

\[
u_i = V_{2\beta\gamma} e_{\gamma^i}, \quad v_i = V_{4\beta\gamma} e_{\gamma^i}, \quad w_i = V_{3\beta\gamma} e_{\gamma^i}.
\]

The vector fields \(h_i, j_i, k_i\) are called \(h\)-connection vectors and the vector fields \(u_i, v_i, w_i\) are called \(v\)-connection vectors. The scalars \(H_{2\beta\gamma}, H_{4\beta\gamma}, H_{3\beta\gamma}\) and \(V_{2\beta\gamma}, V_{4\beta\gamma}, V_{3\beta\gamma}\) are considered as the scalar components \(h_\gamma, j_\gamma, k_\gamma\) and \(u_\gamma, v_\gamma, w_\gamma\) of the \(h\)- and \(v\)-connection vectors respectively with respect to the orthonormal frame.

Let \(C_{\alpha\beta\gamma}\) are the scalar components of \(LC_{ijk}\) then

\[
LC_{ijk} = C_{\alpha\beta\gamma} e_\alpha^i e_\beta^j e_\gamma^k.
\]
The main scalars of a four-dimensional Finsler space are given by \[1, 3, 11\]
\[
C_{222} = A, \quad C_{233} = B, \quad C_{244} = C, \quad C_{322} = D, \quad C_{333} = E, \quad C_{422} = F, \quad C_{433} = G, \quad C_{234} = H.
\]
We also have \(C_{344} = -(D + E), \quad C_{444} = -(F + G)\) and
\[
A + B + C = \tilde{L}c.
\]
\(\tilde{L}c\) is called the unified main scalar.

Taking \(h\)-covariant differentiation of (1.4), we get
\[
T_{\alpha\beta\gamma} = (\delta_k T_{\alpha\beta})^i e^i_{\alpha\beta\gamma} + T_{\mu\alpha\beta} H_{\mu\alpha\gamma} + T_{\alpha\mu} H_{\mu\beta\gamma}.
\]
then we obtain
\[
T_{\alpha\beta\gamma} = (\delta_k T_{\alpha\beta})^i e^i_{\alpha\beta\gamma} + \delta_{1\alpha} T_{\beta\gamma} e^i_{\alpha\beta\gamma}.
\]
Similarly, if \(T_{\alpha\beta\gamma}\) are scalar components of \(LT_{\alpha\beta\gamma}\), i.e.
\[
(1.12)
\]
\[
L^2 T_{\alpha\beta\gamma} = \delta_{1\alpha} T_{\beta\gamma} e^i_{\alpha\beta\gamma}.
\]
then we get
\[
(1.14)
\]
The scalar components \(T_{\alpha\beta\gamma}\) and \(T_{\alpha\beta\gamma}\) are respectively called \(h\)- and \(v\)-scalar derivatives of scalar components \(T_{\alpha\beta}\) of \(T\).

2. **T-condition**

The tensor \(T_{hijk}\) defined by
\[
(2.1)
\]
is called \(T\)-tensor in a Finsler space. It is completely symmetric in its indices. A Finsler space is said to satisfy \(T\)-condition if the \(T\)-tensor \(T_{hijk}\) vanishes identically.

We are concerned with the tensor \(C_{hij}\) of \(C\). From (1.8) and (1.13), it follows that
\[
L^2 C_{hij} = \delta_{1\alpha} T_{\alpha\beta\gamma} e^i_{\alpha\beta\gamma} + T_{\alpha\beta\gamma} e^i_{\alpha\beta\gamma} + T_{\alpha\beta\gamma} e^i_{\alpha\beta\gamma}.
\]
which implies
\[
(2.2)
\]
Therefore the scalar components \(T_{\alpha\beta\gamma}\) of \(LT_{hijk}\) are given by
\[
T_{\alpha\beta\gamma} = \delta_{1\alpha} C_{\alpha\beta\gamma} + \delta_{1\alpha} C_{\alpha\beta\gamma} + \delta_{1\alpha} C_{\alpha\beta\gamma} + \delta_{1\alpha} C_{\alpha\beta\gamma}.
\]
From \(T_{hijk}^{\ell k} = 0 \), we have \(T_{\alpha\beta\gamma\delta} = 0 \). Thus the surviving components \(T_{\alpha\beta\gamma\delta} \) are only

\[
T_{\alpha\beta\gamma\delta} = C_{\alpha\beta\gamma;\delta}; \quad \alpha, \beta, \gamma, \delta = 2, 3, 4. \tag{2.3}
\]

Using (1.14), the explicit forms of \(C_{\alpha\beta\gamma;\delta} \) are obtained as follows:

\[
\begin{align*}
\text{(a)} & \quad C_{222;\delta} = A_{\delta} - 3D u_{\delta} + 3F v_{\delta}, \\
\text{(b)} & \quad C_{233;\delta} = B_{\delta} + (2D - E) u_{\delta} + G v_{\delta} - 2H w_{\delta}, \\
\text{(c)} & \quad C_{244;\delta} = C_{\delta} + (D + E) u_{\delta} - (3F + G) v_{\delta} + 2H w_{\delta}, \\
\text{(d)} & \quad C_{322;\delta} = D_{\delta} + (A - 2B) u_{\delta} + 2H v_{\delta} - F w_{\delta}, \\
\text{(e)} & \quad C_{333;\delta} = E_{\delta} + 3Bu_{\delta} - 3Gw_{\delta}, \\
\text{(f)} & \quad C_{422;\delta} = F_{\delta} - 2H u_{\delta} - (A - 2C) v_{\delta} + Dw_{\delta}, \\
\text{(g)} & \quad C_{433;\delta} = G_{\delta} + 2H u_{\delta} - Bv_{\delta} + (2D + 3E) w_{\delta}, \\
\text{(h)} & \quad C_{444;\delta} = H_{\delta} + (F - G) u_{\delta} - (2D + 3E) v_{\delta} + (B - C) w_{\delta}, \\
\text{(i)} & \quad C_{344;\delta} = -D_{\delta} - E_{\delta} + Cu_{\delta} - 2H v_{\delta} + (F + 3G) w_{\delta}, \\
\text{(j)} & \quad C_{444;\delta} = -F_{\delta} - G_{\delta} - 3C v_{\delta} - (3D + 3E) w_{\delta}, \\
\text{(k)} & \quad C_{1\beta\gamma;\delta} = -C_{\beta\gamma;\delta},
\end{align*}
\]

where \(A_{\delta} = L(\partial_{k} A) e_{\delta}^{k} \). From (1.9) and (2.4), we get

\[
\begin{align*}
C_{222;\delta} + C_{233;\delta} + C_{244;\delta} &= A_{\delta} + B_{\delta} + C_{\delta} = (A + B + C)_{\delta} = (L\tilde{c})_{\delta}, \\
C_{322;\delta} + C_{333;\delta} + C_{344;\delta} &= L\tilde{c} u_{\delta}, \\
C_{422;\delta} + C_{433;\delta} + C_{444;\delta} &= -L\tilde{c} v_{\delta}.
\end{align*} \tag{2.5}
\]

Thus from (2.3), (2.4) and (2.5), we have

Theorem 2.1. In a four-dimensional Finsler space satisfying \(T \)-condition, the \(v \)-connection vectors \(u_{i} \) and \(v_{i} \) vanish identically. Also main scalar \(A \) and the unified main scalar \(L\tilde{c} \) are \(v \)-covariant constants (functions of position only). Furthermore, if \(v \)-connection vector \(w_{i} \) vanishes then all the main scalars are functions of position only.

3. **Berwald Space**

A Berwald space is characterized by \(C_{hijk}^{\ell k} = 0 \). From (1.8) and (1.11), it follows that

\[
LC_{hijk}^{\ell k} = C_{\alpha\beta\gamma;\delta} e_{\alpha}^{a} e_{\beta}^{b} e_{\gamma}^{c} e_{\delta}^{d} k,
\]

where \(C_{\alpha\beta\gamma;\delta} \) are given by

\[
C_{\alpha\beta\gamma;\delta} = (\delta_{\delta} C_{\alpha\beta\gamma} e_{\delta}^{k}) + C_{\mu\beta\gamma} H_{\mu}^{\alpha} a + C_{\alpha\mu\gamma} H_{\mu}^{\beta} \delta + C_{\alpha\beta\mu} H_{\mu}^{\gamma} \delta.
\]
The explicit forms of $C_{\alpha\beta\gamma,\delta}$ are obtained as follows:

\[
\begin{aligned}
 \text{(a)} \quad & C_{222,\delta} = A_{,\delta} - 3Dh_{\delta} + 3Fj_{\delta}, \\
 \text{(b)} \quad & C_{233,\delta} = B_{,\delta} + (2D - E)h_{\delta} + Gj_{\delta} - 2Hk_{\delta}, \\
 \text{(c)} \quad & C_{244,\delta} = C_{,\delta} + (D + E)h_{\delta} - (3F + G)j_{\delta} + 2Hk_{\delta}, \\
 \text{(d)} \quad & C_{322,\delta} = D_{,\delta} + (A - 2B)h_{\delta} + 2Hj_{\delta} - Fk_{\delta}, \\
 \text{(e)} \quad & C_{333,\delta} = E_{,\delta} + 3Bh_{\delta} - 3Gk_{\delta}, \\
 \text{(f)} \quad & C_{422,\delta} = F_{,\delta} - 2Hh_{\delta} - (A - 2C)j_{\delta} + Dk_{\delta}, \\
 \text{(g)} \quad & C_{433,\delta} = G_{,\delta} + 2Hh_{\delta} - B_{,\delta} + (2D + 3E)k_{\delta}, \\
 \text{(h)} \quad & C_{234,\delta} = H_{,\delta} + (F - G)h_{\delta} - (2D + 3E)j_{\delta} + (B - C)k_{\delta}, \\
 \text{(i)} \quad & C_{344,\delta} = -D_{,\delta} - E_{,\delta} + Ch_{\delta} - 2Hj_{\delta} + (F + 3G)k_{\delta}, \\
 \text{(j)} \quad & C_{444,\delta} = -F_{,\delta} - G_{,\delta} - 3Cj_{\delta} - (3D + 3E)k_{\delta}, \\
 \text{(k)} \quad & C_{1,\beta,\gamma,\delta} = 0.
\end{aligned}
\]

From (1.9) and (3.2), we get

\[
\begin{aligned}
 C_{322,\delta} + C_{333,\delta} + C_{344,\delta} &= (A + B + C)h_{\delta} = L\tilde{c}h_{\delta}, \\
 C_{422,\delta} + C_{433,\delta} + C_{444,\delta} &= -(A + B + C)j_{\delta} = -L\tilde{c}j_{\delta}, \\
 C_{222,\delta} + C_{233,\delta} + C_{244,\delta} &= (A_{,\delta} + B_{,\delta} + C_{,\delta}) = (A + B + C)_{,\delta}.
\end{aligned}
\]

Thus from (3.2) and (3.3), we have:

Theorem 3.1 ([11]). In a four-dimensional Berwald space, the h-connection vectors h_1 and j_1 vanish identically. Also main scalar A and the unified main scalar $L\tilde{c}$ are h-covariant constants. Furthermore, if h-connection vector k_1 vanishes then all the main scalars are h-covariant constants.

4. v-Curvature Tensor

The v-curvature tensor is defined by

\[
S_{hijk} = C_{hkr}^{\gamma}C_{ijr} - C_{hjr}^{\gamma}C_{ikr}.
\]

The scalar components $S_{\alpha\beta\gamma,\delta}$ of L^2S_{hijk} are given by

\[
L^2S_{hijk} = S_{\alpha\beta\gamma,\delta}e_{\alpha}^{\gamma}e_{\beta}^{\gamma}e_{\gamma}^{\gamma}e_{\delta}^{\gamma}k.
\]
Theorem 4.1. In an S-3 like four-dimensional Finsler space satisfying T-condition, all the main scalars are functions of position only.
It is clear from (2.4) that if all the main scalars are functions of position only in a Finsler space satisfying T-condition, then the v-connection vectors u_i, v_i, and w_i vanish. This leads to:

Theorem 4.2. In an S-3 like four-dimensional Finsler space satisfying T-condition, the v-connection vectors u_i, v_i, and w_i vanish identically.

A Landsberg space is characterized by $C_{hijk} = C_{hiklj}$. H. Yasuda [12] proved that in an S-3 like Landsberg space, the v-curvature S is constant. In view of this result, in an S-3 like four-dimensional Landsberg space, six independent functions

and

$$2FD + BH + CH - AH - DG + EF$$

are constants.

Since every Berwald space is a Landsberg space, these six functions are constant in an S-3 like Berwald space. From theorem 3.1 and equation (1.9), functions A and $A + B + C$ are h-covariant constants in a four-dimensional Berwald space. Therefore in an S-3 like Berwald space, eight independent functions A, $A + B + C$,

and

$$2FD + BH + CH - AH - DG + EF$$

are h-covariant constants and therefore the main scalars A, B, C, D, E, F, G, and H are h-covariant constants.

Thus, we have:

Theorem 4.3. In an S-3 like four-dimensional Berwald space, all the main scalars are h-covariant constants.

It is clear from (3.2) that if all the main scalars are h-covariant constants in a Berwald space, then the h-connection vectors h_i, j_i, and k_i vanish.

This leads to:

Theorem 4.4. In an S-3 like four-dimensional Berwald space, the h-connection vectors h_i, j_i, and k_i vanish identically.

In view of theorems 4.1, 4.2, 4.3 and 4.4, we can say

Theorem 4.5. In an S-3 like four-dimensional Berwald space satisfying T-condition, all the main scalars are constants and the h- and v-connection vectors vanish.

F. Ikeda [4] proved that a Landsberg space satisfying T-condition is a Berwald space. Thus, we may conclude:

Theorem 4.6. In an S-3 like four-dimensional Landsberg space satisfying T-condition, all the main scalars are constants and the h- and v-connection vectors vanish.
ACKNOWLEDGEMENT

The first author is thankful to UGC, Government of India for the financial support.

REFERENCES

M. K. GUPTA,
DEPARTMENT OF PURE AND APPLIED MATHEMATICS,
GURU GHASIDAS VISHWAVIDYALAYA,
BILASPUR (C.G.), INDIA

P. N. PANDEY,
DEPARTMENT OF MATHEMATICS,
UNIVERSITY OF ALLAHABAD,
ALLAHABAD, INDIA