ORE EXTENSIONS OVER NEAR PSEUDO-VALUATION RINGS

V. K. BHAT

Abstract. We recall that a ring R is called near pseudo-valuation ring if every minimal prime ideal is a strongly prime ideal.

Let R be a commutative ring, σ an automorphism of R. Recall that a prime ideal P of R is σ-divided if it is comparable (under inclusion) to every σ-stable ideal I of R. A ring R is called a σ-divided ring if every prime ideal of R is σ-divided. Also a ring R is almost σ-divided ring if every minimal prime ideal of R is σ-divided.

We also recall that a prime ideal P of R is δ-divided if it is comparable (under inclusion) to every δ-invariant ideal I of R. A ring R is called a δ-divided ring if every prime ideal of R is δ-divided. A ring R is said to be almost δ-divided ring if every minimal prime ideal of R is δ-divided.

We define a Min.Spec-type endomorphism σ of a ring R ($\sigma(U) \subseteq U$ for all minimal prime ideals U of R) and a Min.Spec-type ring (if there exists a Min.Spec-type endomorphism of R). With this we prove the following. Let R be a commutative Noetherian \mathbb{Q}-algebra (\mathbb{Q} is the field of rational numbers), δ a derivation of R. Then:

1. R is a near pseudo valuation ring implies that $R[x; \delta]$ is a near pseudo valuation ring.
2. R is an almost δ-divided ring if and only if $R[x; \delta]$ is an almost δ-divided ring.

We also prove a similar result for $R[x; \sigma]$, where R is a commutative Noetherian ring and σ a Min.Spec-type automorphism of R.

1. Introduction

We follow the notation as in Bhat [10], but to make the note self contained, we have the following. All rings are associative with identity. Throughout this paper R denotes a commutative ring with identity $1 \neq 0$. The nil radical of R and the prime radical of R are denoted by $N(R)$ and $P(R)$ respectively. The set of prime ideals of R is denoted by $\text{Spec}(R)$, the set of minimal prime
ideals of R is denoted by $\text{Min}\text{-}\text{Spec}(R)$, and the set of strongly prime ideals is denoted by $S\text{-}\text{Spec}(R)$. The center of R is denoted by $Z(R)$. The field of rational numbers and the ring of integers are denoted by \mathbb{Q} and \mathbb{Z} respectively unless otherwise stated.

We recall that as in Hedstrom and Houston [15], an integral domain R with quotient field F, is called a pseudo-valuation domain (PVD) if each prime ideal P of R is strongly prime ($ab \in P$, $a \in F$, $b \in F$ implies that either $a \in P$ or $b \in P$). For example let $F = \mathbb{Q}(\sqrt{2})$ and $V = F + xF[[x]] = F[[x]]$. Then V is a pseudo-valuation domain. We also note that $S = \mathbb{Q} + \mathbb{Q}x + x^2V$ is not a pseudo-valuation domain (Badawi [6]). For more details on pseudo-valuation rings, the reader is referred to Badawi [6].

In Badawi, Anderson and Dobbs [7], the study of pseudo-valuation domains was generalized to arbitrary rings in the following way. A prime ideal P of R is said to be strongly prime if σP is strongly prime for all $\sigma \in \text{End}(R)$ (by Proposition (3.1) of Anderson [1], Proposition (4.2) of Anderson [2] and Proposition (3) of Badawi [3].

In Badawi [5], another generalization of PVDs is given in the following way. Let R be a ring with total quotient ring Q such that $N(R)$ is a divided prime ideal of R, let $\phi : Q \to R_{N(R)}$ such that $\phi(a/b) = a/b$ for every $a \in R$ and every $b \in R \setminus Z(R)$. Then ϕ is a ring homomorphism from Q into $R_{N(R)}$, and ϕ restricted to R is also a ring homomorphism from R into $R_{N(R)}$ given by $\phi(r) = r/1$ for every $r \in R$. Denote $R_{N(R)}$ by T. A prime ideal P of $\phi(R)$ is called a T-strongly prime ideal if $\phi(R)$ is a T-pseudo-valuation ring (T-PVR) if each prime ideal of $\phi(R)$ is T-strongly prime. A prime ideal S of R is called ϕ-strongly prime ideal if $\phi(S)$ is a T-strongly prime ideal of $\phi(R)$. If each prime ideal of R is ϕ-strongly prime, then R is called a ϕ-pseudo-valuation ring ($\phi - \text{PVR}$).

This article concerns the study of skew polynomial rings over PVDs. Let R be a ring, σ an endomorphism of R and δ a σ-derivation of R ($\delta : R \to R$ is an additive map with $\delta(ab) = \delta(a)\sigma(b) + a\delta(b)$, for all $a, b \in R$). In case σ is identity, δ is just called a derivation. For example let $R = F[x]$, F a
field. Then \(\sigma: R \to R \) defined by \(\sigma(f(x)) = f(0) \) is an endomorphism of \(R \).

Also let \(K = \mathbb{R} \times \mathbb{R} \). Then \(g: K \to K \) by \(g(a, b) = (b, a) \) is an automorphism of \(K \).

Let \(\sigma \) be an automorphism of a ring \(R \) and \(\delta: R \to R \) any map. Let \(\phi: R \to M_2(R) \) defined by

\[
\phi(r) = \begin{pmatrix} \sigma(r) & 0 \\ \delta(r) & r \end{pmatrix},
\]

for all \(r \in R \) be a homomorphism. Then \(\delta \) is a \(\sigma \)-derivation of \(R \). Also let \(R = F[x], F \) a field. Then the usual differential operator \(\frac{d}{dx} \) is a derivation of \(R \).

We denote the Ore extension \(R[x; \sigma, \delta] \) by \(O(R) \). If \(I \) is an ideal of \(R \) such that \(I \) is \(\sigma \)-stable; i.e. \(\sigma(I) = I \) and \(I \) is \(\delta \)-invariant; i.e. \(\delta(I) \subseteq I \), then we denote \(I[x; \sigma, \delta] \) by \(O(I) \). We would like to mention that \(R[x; \sigma, \delta] \) is the usual set of polynomials with coefficients in \(R \), i.e. \(\{\sum_{i=0}^{n} x^{i}a_{i}, a_{i} \in R\} \) in which multiplication is subject to the relation \(ax = x\sigma(a) + \delta(a) \) for all \(a \in R \).

In case \(\delta \) is the zero map, we denote the skew polynomial ring \(R[x; \sigma] \) by \(S(R) \) and for any ideal \(II \) of \(R \) with \(\sigma(I) = I \), we denote \(I[x; \sigma] \) by \(S(I) \). In case \(\sigma \) is the identity map, we denote the differential operator ring \(R[x; \delta] \) by \(D(R) \) and for any ideal \(J \) of \(R \) with \(\delta(J) \subseteq J \), we denote \(J[x; \delta] \) by \(D(J) \).

Ore-extensions (skew-polynomial rings and differential operator rings) have been of interest to many authors. For example see [10, 11, 12, 14, 16].

Recall that a ring \(R \) is called a near pseudo-valuation ring (NPVR) if each minimal prime ideal \(P \) of \(R \) is strongly prime (Bhat [12]). For example a reduced ring is NPVR.

Here the term near may not be interpreted as near ring (Bell and Mason [8]). We note that a near pseudo-valuation ring (NPVR) is a pseudo-valuation ring (PVR), but the converse is not true. For example a reduced ring is a NPVR, but need not be a PVR.

We recall that a prime ideal \(P \) of \(R \) is said to be divided if it is comparable (under inclusion) to every ideal of \(R \). A ring \(R \) is called a divided ring if every prime ideal of \(R \) is divided (Badawi [4]). It is known (Lemma (1) of Badawi, Anderson and Dobbs [7]) that a pseudo-valuation ring is a divided ring. Recall that a ring \(R \) is called an almost divided ring if every minimal prime ideal of \(R \) is divided (Bhat [12]).

We also recall that a prime ideal \(P \) of \(R \) is \(\sigma \)-divided if it is comparable (under inclusion) to every \(\sigma \)-stable ideal \(I \) of \(R \). A ring \(R \) is called a \(\sigma \)-divided ring if every prime ideal of \(R \) is \(\sigma \)-divided (see Bhat [10]). A ring \(R \) is said to be almost \(\sigma \)-divided ring if every minimal prime ideal of \(R \) is \(\sigma \)-divided (Bhat [12]).

A prime ideal \(P \) of \(R \) is said to be \(\delta \)-divided if it is comparable (under inclusion) to every \(\sigma \)-stable and \(\delta \)-invariant ideal \(I \) of \(R \). A ring \(R \) is called a \(\delta \)-divided ring if every prime ideal of \(R \) is \(\delta \)-divided (Bhat [10]). A ring \(R \) is said to be almost \(\delta \)-divided ring if every minimal prime ideal of \(R \) is \(\delta \)-divided (Bhat [12]).
The author of this paper has proved in Theorems (2.6) and (2.8) of [10] the following. Let R be a ring and σ an automorphism of R. Then:

1. If R is a commutative pseudo-valuation ring such that $x \notin P$ for any $P \in \text{Spec}(S(R))$, then $S(R)$ is also a pseudo-valuation ring.
2. If R is a σ-divided ring such that $x \notin P$ for any $P \in \text{Spec}(S(R))$, then $S(R)$ is also a σ-divided ring.

In Theorems (2.10) and (2.11) of [10] the following results have been proved. Let R be a commutative Noetherian \mathbb{Q}-algebra and δ a derivation of R. Then:

1. If R is a pseudo-valuation ring, then $D(R)$ is also a pseudo-valuation ring.
2. If R is a divided ring, then $D(R)$ is also a divided ring.

An analogue of the above results for near pseudo-valuation rings, almost divided rings and almost δ-divided rings has been proved in (Bhat [12]), where R is a $\sigma(\ast)$-ring. Recall that a ring R is said to be a $\sigma(\ast)$-ring (\sigma an endomorphism of R) if $a \sigma(a) \in P(R)$ implies $a \in P(R)$ for $a \in R$ (Kwak [16]).

Theorem ([12, 2.5]). Let R be a commutative Noetherian near pseudo valuation ring which is also an algebra over \mathbb{Q}. Let σ be an automorphism of R such that R is a $\sigma(\ast)$-ring and δ a σ-derivation of R. Then $O(R)$ is a Noetherian near pseudo-valuation ring.

Theorem ([12, 2.7]). If R is a commutative Noetherian almost δ-divided $\sigma(\ast)$-ring which is also an algebra over \mathbb{Q}, then $O(R)$ is a Noetherian almost δ-divided ring.

In this paper we give a necessary and sufficient condition for $D(R)$ over a Noetherian \mathbb{Q}-algebra R to be a near pseudo valuation ring. We also give a necessary and sufficient condition for $D(R)$ over a Noetherian \mathbb{Q}-algebra R to be an almost divided ring. We prove similar results for $S(R)$ over a Noetherian ring R. These results have been proved in Theorems (2.5) and (2.7) respectively. But before that, we have the following definition:

Definition 1.1. Let R be a ring. We say that an endomorphism σ of R is Min.Spec-type if $\sigma(U) \subseteq U$ for all minimal prime ideals U of R. We say that a ring R is Min.Spec-type ring if there exists a Min.Spec-type endomorphism of R.

Example 1.2. Let $R = \begin{pmatrix} F & F' \\ 0 & F \end{pmatrix}$, where F is a field. Let $\sigma : R \to R$ be defined by $\sigma(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}) = \begin{pmatrix} a & 0 \\ 0 & c \end{pmatrix}$. Then it can be seen that σ is a Min.Spec-type endomorphism of R, and therefore, R is a Min.Spec-type ring.

Proposition 1.3. If R is a Noetherian ring and σ is an automorphism of R such that R is a $\sigma(\ast)$-ring, then σ is a Min.Spec-type automorphism of R; i.e. R is a Min.Spec-type ring.
ORE EXTENSIONS OVER NEAR PSEUDO-VALUATION RINGS

Proof. Note that σ is an automorphism, therefore, $\sigma(U) \subseteq U$ implies that $\sigma(U) = U$. Now let R be a σ-ring. We will first show that $P(R)$ is completely semiprime. Let $a \in R$ be such that $a^2 \in P(R)$. Then $\sigma(a)\sigma(a) = a\sigma(a)\sigma(a) = a\sigma(a) \sigma^2(a) \in \sigma(P(R)) = P(R)$. Therefore $a\sigma(a) \in P(R)$ and hence $a \in P(R)$. So $P(R)$ is completely semiprime. Now let $U = U_1$ be a minimal prime ideal of R. Let U_2, U_3, \ldots, U_n be the other minimal primes of R. Suppose that $\sigma(U) \neq U$. Then $\sigma(U)$ is also a minimal prime ideal of R. Renumber so that $\sigma(U) = U_n$. Let $a \in \cap_{i=1}^{n-1} U_i$. Then $\sigma(a) \in U_n$, and so $a\sigma(a) \in \cap_{i=1}^{n-1} U_i = P(R)$. Therefore $a \in P(R)$, and thus $\cap_{i=1}^{n-1} U_i \subseteq U_n$, which implies that $U_i \subseteq U_n$ for some $i \neq n$, which is impossible. Hence $\sigma(U) = U$. \qed

The converse of the above need not not be true. For example let $R = F[x]$, F a field. Then R is a commutative domain with $P(R) = 0$. Let $\sigma : R \rightarrow R$ be defined by $\sigma(f(x)) = f(0)$. Then σ is a $\text{Min} \text{Spec}$-type endomorphism of R. Now let $f(x) = xa$, $0 \neq a \in F$. Then $f(x)\sigma(f(x)) \in P(R)$, but $f(x) \notin P(R)$. Therefore R is not a σ-ring.

2. Ore extensions

We recall that Gabriel proved in Lemma (3.4) of [13] that if R is a Noetherian \mathbb{Q}-algebra and δ is a derivation of R, then $\delta(U) \subseteq U$, for all $U \in \text{Min} \text{ Spec}(R)$. This result has been generalized in Theorem (2.2) of Bhat [9] for a σ-derivation δ of R and the following has been proved:

Theorem 2.1. Let R be a Noetherian \mathbb{Q}-algebra. Let σ be an automorphism of R and δ a σ-derivation of R such that $\sigma(\delta(a)) = \delta(\sigma(a))$, for $a \in R$. Then $\delta(U) \subseteq U$ for all $U \in \text{Min} \text{Spec}(R)$.

Proof. See Theorem (2.2) of Bhat [9]. \qed

Theorem 2.2 ([11, Theorem 3.7]). Let R be a Noetherian \mathbb{Q}-algebra and δ be a derivation of R. Then $P \in \text{Min} \text{Spec}(D(R))$ if and only if $P = D(P \cap R)$ and $P \cap R \in \text{Min} \text{Spec}(R)$.

Let R be a Noetherian ring. Then since $\text{Min} \text{Spec}(R)$ is finite and for any automorphism σ of R, $\sigma^j(U) \in \text{Min} \text{Spec}(R)$ for all $U \in \text{Min} \text{Spec}(R)$ and for all integers $j \geq 1$, it follows that there exists some positive integer m such that $\sigma^m(U) = U$ for all $U \in \text{Min} \text{Spec}(R)$. We denote $\cap_{j=0}^{n-1} \sigma^j(U)$ by U^0. With this we have the following

Theorem 2.3 ([11, Theorem 2.4]). Let R be a Noetherian ring and σ an automorphism of R. Then $P \in \text{Min} \text{Spec}(S(R))$ if and only if there exists $U \in \text{Min} \text{Spec}(R)$ such that $S(P \cap R) = P$ and $P \cap R = U^0$.

Theorem 2.4 (Hilbert Basis Theorem). Let R be a right/left Noetherian ring. Let σ and δ be as usual. Then the ore extension $O(R) = R[x; \sigma, \delta]$ is right/left Noetherian.

Proof. See Theorem (1.12) of Goodearl and Warfield [14]. \qed
Remark 1. We note if R is a ring, σ an automorphism of R and δ a σ-derivation of R such that $\sigma(\delta(a)) = \delta(\sigma(a))$ for all $a \in R$. Then σ can be extended to an automorphism of $O(R)$ by $\sigma(x) = x$; i.e. $\sigma(xa) = x\sigma(a)$ for $a \in R$. Also δ can be extended to a σ-derivation of $O(R)$ by $\delta(x) = 0$; i.e. $\delta(xa) = x\delta(a)$ for $a \in R$.

It is known (Theorem (2.10) of Bhat [10]) that if R is a commutative Noetherian \mathbb{Q}-algebra which is also a PVR. Then $D(R)$ is also a PVR. We generalize this result for NPVR and prove its converse also.

It is also known (Theorem (2.11) of Bhat [10]) that if R is a commutative Noetherian \mathbb{Q}-algebra, and is also divided, then $D(R)$ is also divided. We generalize this result for almost divided rings and prove its converse also. Towards this we prove the following:

Theorem 2.5. Let R be a Noetherian ring, which is also an algebra over \mathbb{Q}. Let δ be a derivation of R. Further let any $U \in S.\text{Spec}(R)$ with $\delta(U) \subseteq U$ implies that $O(U) \in S.\text{Spec}(O(R))$. Then

1. R is a near pseudo-valuation ring implies that $D(R)$ is a near pseudo-valuation ring.
2. R is an almost δ-divided ring if and only if $D(R)$ is an almost δ-divided ring.

Proof. (1) Let R be a near pseudo-valuation ring which is also an algebra over \mathbb{Q}. Now $D(R)$ is Noetherian by Theorem (2.4). Let $J \in \text{Min}.\text{Spec}(D(R))$. Then by Theorem (2.2) $J \cap R \in \text{Min}.\text{Spec}(R)$. Now R is a near pseudo-valuation \mathbb{Q}-algebra, therefore $J \cap R \subseteq S.\text{Spec}(R)$. Also $\delta(J \cap R) \subseteq J \cap R$ by Theorem (2.1). Now Theorem (2.2) implies that $D(J \cap R) = J$, and by hypothesis $D(J \cap R) \in S.\text{Spec}(D(R))$. Therefore $J \in S.\text{Spec}(D(R))$. Hence $D(R)$ is a near pseudo-valuation ring.

(2) Let R be an almost δ-divided which is also an algebra over \mathbb{Q}. Now $D(R)$ is Noetherian by Theorem (2.4). Let $J \in \text{Min}.\text{Spec}(D(R))$ and K be an ideal of $D(R)$. Now by Theorem (2.2) $J \cap R \in \text{Min}.\text{Spec}(R)$. Now R is an almost δ-divided commutative Noetherian \mathbb{Q}-algebra, therefore $J \cap R$ and $K \cap R$ are comparable (under inclusion), say $J \cap R \subseteq K \cap R$. Now $\delta(K \cap R) \subseteq K \cap R$ by Lemma (2.18) of Goodearl and Warfield [14]. Therefore, $D(K \cap R)$ is an ideal of $D(R)$ and so $D(J \cap R) \subseteq D(K \cap R)$. This implies that $J \subseteq K$. Hence $D(R)$ is an almost δ-divided ring.

Conversely suppose that $D(R)$ is almost δ-divided (note that δ can be extended to a derivation of $D(R)$ by Remark (1)). Let $U \in \text{Min}.\text{Spec}(R)$ and V be a δ-invariant ideal of R. Now by Theorem (2.1) $\delta(U) \subseteq U$, and Theorem (2.2) implies that $D(U) \in \text{Min}.\text{Spec}(D(R))$. Now $D(R)$ is an almost δ-divided ring, therefore $D(U)$ and $D(V)$ are comparable (under inclusion), say $D(U) \subseteq D(V)$. Therefore, $D(U) \cap R \subseteq D(V) \cap R$; i.e. $U \subseteq V$. Hence R is an almost δ-divided ring. \qed
We note that in above Theorem the hypothesis that any \(U \in S.Spec(R) \) with
\(\delta(U) \subseteq U \) implies that \(O(U) \in S.Spec(O(R)) \) can not be deleted as extension of a strongly prime ideal of \(R \) need not be a strongly prime ideal of \(D(R) \).

Example 2.6. \(R = \mathbb{Z}_{(p)} \). This is in fact a discrete valuation domain, and therefore, its maximal ideal \(P = pR \) is strongly prime. But \(pR[x] \) is not strongly prime in \(R[x] \) because it is not comparable with \(xR[x] \) (so the condition of being strongly prime in \(R[x] \) fails for \(a = 1 \) and \(b = x \)).

It is known (Theorem (2.6) of Bhat [10]) that if \(R \) is a commutative PVR such that \(x \notin P \) for any \(P \in Spec(S(R)) \). Then \(S(R) \) is also a PVR. We generalize this result for NPVR and prove its converse also.

It is known (Theorem (2.8) of Bhat [10]) that if \(R \) is a \(\sigma \)-divided Noetherian ring such that \(x \notin P \) for any \(P \in Spec(S(R)) \). Then \(S(R) \) is also a \(\sigma \)-divided ring. We generalize this result for NPVR and prove its converse also. Towards this we have the following:

Theorem 2.7. Let \(R \) be a Noetherian ring. Let \(\sigma \) be a Min.Spec-type automorphism of \(R \). Further let any \(U \in S.Spec(R) \) with \(\sigma(U) = U \) implies that \(O(U) \in S.Spec(O(R)) \). Then

1. \(R \) is a near pseudo-valuation ring implies that \(S(R) \) is a near pseudo-valuation ring.
2. \(R \) is an almost \(\sigma \)-divided ring if and only if \(S(R) \) is an almost \(\sigma \)-divided ring.

Proof. (1) Let \(R \) be a near pseudo-valuation ring. Now \(S(R) \) is Noetherian by Theorem (2.4). Let \(J \in Min.Spec(S(R)) \). Then by Theorem (2.3) there exists \(U \in Min.Spec(R) \) such that \(S(P \cap R) = P \) and \(P \cap R = U^0 \). But \(\sigma \) being Min.Spec-type implies that \(\sigma(U) = U \), and so \(U^0 = U \). Now \(R \) is a near pseudo-valuation ring implies that \(U \in S.Spec(R) \). Now by hypothesis \(S(U) \in S.Spec(S(R)) \). But \(S(U) = P \). Therefore \(P \in S.Spec(S(R)) \). Hence \(S(R) \) is a near pseudo-valuation ring.

(2) Let \(R \) be a ring which is also almost \(\sigma \)-divided. Now \(S(R) \) is Noetherian by Theorem (2.4). Let \(J \in Min.Spec(S(R)) \) and \(K \) be an ideal of \(S(R) \) such that \(\sigma(K) = K \) (note that \(\sigma \) can be extended to an automorphism of \(S(R) \) by Remark (1)). Now by Theorem (2.3) there exists \(U \in Min.Spec(R) \) such that \(S(J \cap R) = J \) and \(J \cap R = U^0 \). But \(\sigma \) being Min.Spec-type implies that \(\sigma(U) = U \), and so \(U^0 = U \). Now \(R \) is an almost \(\sigma \)-divided, therefore \(U \) and \(K \cap R \) are comparable (under inclusion), say \(U \subseteq K \cap R \). Therefore, \(S(U) \subseteq S(K \cap R) \). This implies that \(J \subseteq K \). Hence \(S(R) \) is an almost \(\sigma \)-divided ring.

Conversely let \(R \) be a ring such that \(S(R) \) is almost \(\sigma \)-divided. Let \(U \in Min.Spec(R) \) and \(V \) be a \(\sigma \)-stable ideal of \(R \). Now \(\sigma \) being Min.Spec-type implies that \(\sigma(U) = U \) and Theorem (2.3) implies that \(S(U) \in Min.Spec(S(R)) \).
Now $S(R)$ is an almost σ-divided ring, therefore $S(U)$ and $S(V)$ are comparable (under inclusion), say $S(U) \subseteq S(V)$. Therefore, $S(U) \cap R \subseteq S(V) \cap R$; i.e. $U \subseteq V$. Hence R is an almost σ-divided ring.

□

Problem. Let R be a NPVR. Let σ be an automorphism of R and δ a σ-derivation of R. Is $O(R) = R[x; \sigma, \delta]$ a NPVR?

Acknowledgement. The author would like to express his sincere thanks to the referee for suggestions.

References

Received March 1, 2009.
School of Mathematics,
Shri Mata Vaishno Devi University,
Katra, Distt. Reasi, Jammu & Kashmir Pin-182320,
India
E-mail address: vijaykumarbhat2000@yahoo.com