CERTAIN CLASS OF HARMONIC STARLIKE FUNCTIONS
WITH SOME MISSING COEFFICIENTS

S. M. KHARINAR AND MEENA MORE

Abstract. In this paper we have introduced a new class $J_H(\alpha, \beta, \gamma)$ of Harmonic Univalent functions in the unit disk $E = \{z; |z| < 1\}$ on the lines of [3] and [4], but with some missing coefficient. We have studied various properties such as coefficient estimates, extreme points, convolution and their related results.

1. Introduction

The class of functions of the form,

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

that are analytic univalent and normalized in the unit disc E, is denoted by S. The class K of convex functions and class S^* of starlike functions are two widely investigated subclasses of S.

A continuous function $f = u + iv$ defined in a domain $D \subseteq \mathbb{C}$ is harmonic in D if u and v are real Harmonic in D. In any simply connected sub domain of D we can write,

$$f = h + \overline{g}$$

(1.1)

where h and g are analytic, h is called the analytic and g the coanalytic part of f. In this paper we have introduced a new class $J_H(\alpha, \beta, \gamma)$ of functions of the form (1.1) namely $f = h + \overline{g}$ that are Harmonic Univalent and sense preserving

2000 Mathematics Subject Classification. 30C45, 30C50.

Key words and phrases. Univalent functions, Harmonic functions, Starlike functions, and convolution.
in the unit disk E with $f(0) = f'(0) - 1 = 0$, where h and g are of the form

$$ h(z) = z - \sum_{n=2}^{\infty} a_{n+1} z^{n+1} \quad \text{and} \quad g(z) = \sum_{n=1}^{\infty} b_{n+1} z^{n+1} $$

J_H is the subclass of J.

For $0 \leq \alpha < 1$, J_H denotes the subclass of J consisting of harmonic starlike functions of order α satisfying,

$$ \frac{\partial}{\partial \theta} \left(\arg f(re^{i\theta}) \right) \geq \alpha; \quad |z| = r < 1. $$

Clunie and Sheil-Small [3] and Jahangiri [4] studied Harmonic starlike functions of order α and Rosey et al. [6] considered the Goodman-Ronning-Type harmonic univalent functions which satisfies the condition

$$ \Re \left\{ (1 + e^{i\alpha}) \frac{zf'}{f} - e^{i\alpha} \right\} \geq 0. $$

Definition. A function $f \in J_H(\alpha, \beta, \gamma)$ if it satisfies the condition

$$ \Re \left\{ (1 + e^{i\alpha}) \frac{zf'}{f} - \gamma e^{i\alpha} \right\} \geq \beta $$

$0 \leq \alpha < 1, 0 \leq \beta < 1, \frac{1}{2} < \gamma \leq 1$ where

$$ z' = \frac{\partial}{\partial \theta} (z = re^{i\theta}); \quad f'(z) = \frac{\partial}{\partial \theta} f(re^{i\theta}) $$

α, β, γ and θ are real.

Let \overline{J}_H denote a subclass of $J(\alpha, \beta, \gamma)$ consisting of functions $f = h + \overline{g}$ such that h and g are of the form

$$ h(z) = z - \sum_{n=2}^{\infty} a_{n+1} z^{n+1} \quad \text{and} \quad g(z) = \sum_{n=1}^{\infty} b_{n+1} z^{n+1}, \quad a_{n+1} \geq 0, b_{n+1} \geq 0 $$

2. Coefficient Estimates

Theorem 1. Let $f = h + \overline{g}$, where h and g are given by (1.4). Furthermore let

$$ \sum_{n=2}^{\infty} \left\{ \frac{(2n - \beta - \gamma + 2)}{(2 - \beta - \gamma)} |a_{n+1}| + \frac{(2n + \beta + \gamma + 2)}{(2 - \beta - \gamma)} |b_{n+1}| \right\} \leq 2 $$

where $a_1 = 1$, $0 \leq \beta < 1$ and $\frac{1}{2} < \gamma \leq 1$. Then f is harmonic univalent in unit disc E and $f \in \overline{J}_H(\alpha, \beta, \gamma)$.
Proof. We first observe that f is locally univalent and orientation preserving in unit disc E. This is because

$$|h'(z)| \geq 1 - \sum_{n=2}^{\infty} (n+1)|a_{n+1}|r^n > 1 - \sum_{n=2}^{\infty} (n+1)|a_{n+1}|$$

$$\geq 1 - \sum_{n=2}^{\infty} \frac{(2n-\beta-\gamma+2)}{(2-\beta-\gamma)}|a_{n+1}| \geq \sum_{n=2}^{\infty} \frac{(2n+\beta+\gamma+2)}{(2-\beta-\gamma)}|b_{n+1}|$$

$$\geq \sum_{n=1}^{\infty} (n+1)|b_{n+1}| \geq \sum_{n=1}^{\infty} (n+1)|b_{n+1}|r^n \geq g'(z).$$

In order to show that f is univalent in E we show that $f(z_1) \neq f(z_2)$ whenever $z_1 \neq z_2$. Since E is simply connected and convex we have $z(\lambda) = (1-\lambda)z_1 + \lambda z_2 \in E$ if $0 \leq \lambda \leq 1$ and if $z_1, z_2 \in E$ so that $z_1 \neq z_2$. Then we write,

$$f(z_2) - f(z_1) = \int_0^1 [(z_2 - z_1)h'(z(t)) + (z_2 - z_1)g'(z(t))]dt.$$

Dividing by $z_2 - z_1 \neq 0$ and taking the real part we have,

$$\Re \left\{ \frac{f(z_2) - f(z_1)}{z_2 - z_1} \right\} = \int_0^1 \Re \left[\frac{h'(z(t)) + \frac{(z_2 - z_1)}{(z_2 - z_1)}g'(z(t))}{z_2 - z_1} \right]dt$$

(2.2)

$$> \int_0^1 \Re [h'(z(t)) - |g'(z(t))|]dt$$

on the other hand,

$$\Re (h'(z) - |g'(z)|) \geq \Re h'(z) - \sum_{n=1}^{\infty} (n+1)|b_{n+1}|$$

$$\geq 1 - \sum_{n=2}^{\infty} (n+1)|a_{n+1}| - \sum_{n=1}^{\infty} (n+1)|b_{n+1}|$$

$$\geq 1 - \sum_{n=2}^{\infty} \frac{(2n-\beta-\gamma+2)}{(2-\beta-\gamma)}|a_{n+1}|$$

$$- \sum_{n=1}^{\infty} \frac{(2n+\beta+\gamma+2)}{(2-\beta-\gamma)}|b_{n+1}|$$

$$\geq 0$$

using (2.1). This along with inequality (2.2) leads to the univalence of f. According to the condition (1.2), it suffices to show that (2.1) holds if

$$\Re \left\{ \frac{(1 + e^{i\alpha})(z h'(z) - zg'(z)) - \gamma e^{i\alpha}(h(z) + g(z))}{h(z) + g(z)} \right\} = \Re \frac{A(z)}{B(z)} \geq \beta$$

where $z = re^{i\theta}$, $0 \leq \theta \leq 2\pi$, $0 \leq r < 1$, $\frac{1}{2} < \gamma \leq 1$.
Let \(A(z) = (1 + e^{i\alpha})(zh'(z) - zg'(z)) - \gamma e^{i\alpha}(h(z) + g(z)) \) and \(B(z) = h(z) + g(z) \). Since \(Re(w) \geq \beta \) if and only if \(|\gamma - \beta + w| \geq |\gamma + \beta - w|\). It is enough to show that

\[
(2.3) \quad |A(z) + (1 - \beta)B(z)| - |A(z) - (1 + \beta)B(z)| \geq 0.
\]

Substitute for \(A(z) \) and \(B(z) \) in (2.3) to yield

\[
\begin{align*}
&|(1 - \beta)h(z) + (1 + e^{i\alpha})zh'(z) - \gamma e^{i\alpha}h(z) \nonumber \\
&\quad + (1 - \beta)g(z) - (1 + e^{i\alpha})zg'(z) - \gamma e^{i\alpha}g(z)| \\
&\quad - |(1 + \beta)h(z) - (1 + e^{i\alpha})zh'(z) + \gamma e^{i\alpha}h(z) \\
&\quad + (1 + \beta)g(z) + (1 + e^{i\alpha})zg'(z) + \gamma e^{i\alpha}g(z)| \\
&\quad = |(2 - \beta)z + ze^{i\alpha}(1 - \gamma) - \sum_{n=2}^{\infty} [(2n + 2 - \beta + e^{i\alpha}(n + 1 - \gamma)]a_{n+1}z^{n+1} \\
&\quad \quad - \sum_{n=2}^{\infty} [(n + 2 - \beta + e^{i\alpha}(1 + n + \gamma)]b_{n+1}z^{n+1}| \\
&\quad \quad - \beta z + ze^{i\alpha}(1 - \gamma) + \sum_{n=2}^{\infty} [(n - \beta) + e^{i\alpha}(1 + n - \gamma)]a_{n+1}z^{n+1} \\
&\quad \quad + \sum_{n=1}^{\infty} [(2 + \beta + n) + e^{i\alpha}(1 + n + \gamma)]b_{n+1}z^{n+1}| \\
&\quad \geq (3 - \beta - \gamma)|z| - \sum_{n=2}^{\infty} (3 + 2n - \beta - \gamma)|a_{n+1}|z^{n+1} \\
&\quad \quad - \sum_{n=1}^{\infty} (2n + \beta + 2n + \gamma + 1)|b_{n+1}|z^{n+1} \\
&\quad \quad - (\beta + \gamma - 1)|z| - \sum_{n=2}^{\infty} (2n - \beta - \gamma + 1)|a_{n+1}|z^{n+1} \\
&\quad \quad - \sum_{n=1}^{\infty} (3 + 2n + 2n + \beta + \gamma)|b_{n+1}|z^{n+1} \\
&\quad \geq 2(2 - \beta - \gamma)|z| \left\{ 1 - \sum_{n=2}^{\infty} \frac{(2n - \beta - 2n + \gamma + 2)}{(2 - \beta - \gamma)}|a_{n+1}|z^{n} \\
&\quad \quad - \sum_{n=1}^{\infty} \frac{(2n + \beta + 2n + \gamma + 2)}{(2 - \beta - \gamma)}|b_{n+1}|z^{n} \right\} \\
&\quad \geq 2(2 - \beta - \gamma)|z| \left\{ 1 \right. \\
&\quad \quad - \left[\sum_{n=2}^{\infty} \frac{(2n - \beta - 2n + \gamma + 2)}{(2 - \beta - \gamma)}|a_{n+1}| \right. \\
&\quad \quad \left. \left. - \sum_{n=1}^{\infty} \frac{(2n + \beta + 2n + \gamma + 2)}{(2 - \beta - \gamma)}|b_{n+1}| \right. \right\}.
\end{align*}
\]
\[+ \sum_{n=1}^{\infty} \frac{(2n + \beta + \gamma + 2)}{(2 - \beta - \gamma)} |b_{n+1}| \} \geq 0. \]

By (2.1), the functions

\[(2.4) \quad f(z) = z + \sum_{n=2}^{\infty} \frac{2 - \beta - \gamma}{2n - \beta - \gamma + 2} x_{n+1} z^{n+1} + \sum_{n=1}^{\infty} \frac{2 - \beta - \gamma}{2n + \beta + \gamma + 2} y_{n+1} z^{n+1} \]

where

\[\sum_{n=2}^{\infty} |x_{n+1}| + \sum_{n=1}^{\infty} |y_{n+1}| = 1 \]

shows that the coefficient bound given by (2.1) is sharp. \[\square \]

The function of the form (2.4) are in \(J_H(\alpha, \beta, \gamma) \) because

\[\sum_{n=2}^{\infty} \left\{ \frac{(2n - \beta - \gamma + 2)}{(2 - \beta - \gamma)} |a_{n+1}| + \frac{(2n + \beta + \gamma + 2)}{(2 - \beta - \gamma)} |b_{n+1}| \right\} \]

\[= 1 + \sum_{n=2}^{\infty} |x_{n+1}| + \sum_{n=1}^{\infty} |y_{n+1}| = 2 \]

where \(a_1 = 1 \) and some coefficients are missing. The restriction placed in Theorem (1) on the module of the coefficients of \(f \), enables us to conclude for arbitrary rotation of the coefficients of \(f \) that the resulting function would still be harmonic and univalent in \(J_H(\alpha, \beta, \gamma) \). The following theorem establishes that such coefficient bounds cannot be improved.

Theorem 2. Let \(f = h + g \), be so that \(h \) and \(g \) are

\[(2.5) \quad h(z) = z - \sum_{n=2}^{\infty} a_{n+1} z^{n+1}; \quad g(z) = \sum_{n=1}^{\infty} b_{n+1} z^{n+1} \]

Then \(f(z) \in J_H(\alpha, \beta, \gamma) \) if and only if

\[(2.6) \quad \sum_{n=2}^{\infty} \left\{ \frac{(2n - \beta - \gamma + 2)}{(2 - \beta - \gamma)} |a_{n+1}| + \frac{(2n + \beta + \gamma + 2)}{(2 - \beta - \gamma)} |b_{n+1}| \right\} \leq 2 \]

where \(a_1 = 1, 0 \leq \beta < 1, \frac{1}{2} < \gamma \leq 1 \) and some coefficients are missing.

Proof. The “if” part follows from theorem [1] upon noting that if the analytic part \(h \) and co-analytic part \(g \) of \(f \in J_H \) are of the form (2.5) then \(f \in J_H \).

For the “only if” part, we show that \(f(z) \notin J_H \) if the condition (2.6) does not hold. Note that a necessary and sufficient condition for \(f = h + g \) given by (2.5) to be in \(J_H \) is that

\[\text{Re} \left\{ (1 + e^{i\alpha}) z f'(z) - \gamma e^{i\alpha} \right\} \geq \beta. \]
This is equivalent to
\[
\text{Re}\left\{ \frac{(1 + e^{i\alpha})(zh'(z) - zg'(z)) - \gamma e^{i\alpha}(h(z) - g(z)) - \beta}{h(z) + g(z)} \right\} = \text{Re}\left\{ \frac{(2 - \beta - \gamma)z - \sum_{n=2}^{\infty} (2n - \beta - \gamma + 2)|a_{n+1}|z^{n+1} - \sum_{n=1}^{\infty} (2n + \beta + \gamma + 2)|b_{n+1}|z^{n+1}}{z - \sum_{n=2}^{\infty} |a_{n+1}|z^{n+1} + \sum_{n=1}^{\infty} |b_{n+1}|z^{n+1}} \right\}.
\]

The above condition must hold for all values of \(z, |z| = r < 1 \geq 0\). Choosing the values of \(z\) along \(+ve\) real axis where \(0 \leq z = r < 1\), we must have

\[
(2 - \beta - \gamma) - \sum_{n=2}^{\infty} (2n - \beta - \gamma + 2)|a_{n+1}|r^{n} - \sum_{n=1}^{\infty} (2n + \beta + \gamma + 2)|b_{n+1}|r^{n}
\]

If the condition (2.6) does not hold then the numerator in (2.7) is negative for \(r\) sufficiently close to 1. Thus, there exists \(z_0 = r_0\) in \((0, 1)\) for which the quotient in (2.7) is negative. This contradicts the required condition for \(f \in J_{H}\) and hence the required result.

\[\square\]

3. Extreme Points

We obtain the extreme points of the closed convex hulls of \(J_{H}\), denoted by \(CLCHJ_{H}\).

Theorem 3. \(f(z) \in CLCHJ_{H}\) if and only if,

\[
f(z) = \sum_{n=2}^{\infty} (x_{n+1}h_{n+1} + y_{n+1}g_{n+1})
\]

where \(h_{1}(z) = z\);

\[
h_{n+1}(z) = z - \frac{(2 - \beta - \gamma)}{(2n - \beta - \gamma + 2)}z^{n+1}; \quad n = 2, 3, 4, \ldots
\]

\[
g_{n+1}(z) = z + \frac{(2 - \beta - \gamma)}{(2n + \beta + \gamma + 2)}z^{n+1}; \quad n = 1, 2, 3, \ldots
\]

\[
\sum_{n=2}^{\infty} (x_{n+1} + y_{n+1}) = 1; \quad x_{n+1} \geq 0 \text{ and } y_{n+1} \geq 0.
\]
In particular, the extreme points of J_H, are $\{h_{n+1}\}$ and $\{g_{n+1}\}$.

Proof. For function f of the form (3.1) we have,

$$f(z) = \sum_{n=2}^{\infty} (x_{n+1} h_{n+1} + y_{n+1} g_{n+1})$$

Then

$$f(z) = \sum_{n=2}^{\infty} (x_{n+1} + y_{n+1})z - \sum_{n=2}^{\infty} \frac{(2 - \beta - \gamma)}{(2n - \beta - \gamma + 2)} x_{n+1} z^{n+1} + \sum_{n=1}^{\infty} \frac{(2 - \beta - \gamma)}{(2n + \beta + \gamma + 2)} y_{n+1} z^{n+1}$$

and so $f(z) \in CLCH J_H$.

Conversely, suppose that $f(z) \in CLCH J_H$. Set

$$x_{n+1} = \frac{(2n - \gamma - \beta + 2)}{(2 - \beta - \gamma)} |a_{n+1}|; \quad n = 2, 3, 4, \ldots$$

and

$$y_{n+1} = \frac{(2n + \gamma + \beta + 2)}{(2 - \beta - \gamma)} |b_{n+1}|; \quad n = 1, 2, 3, 4, \ldots$$

Then note that by theorem (2), $0 \leq x_{n+1} \leq 1, n = 2, 3, 4, \ldots$ and $0 \leq y_{n+1} \leq 1, n = 1, 2, 3, \ldots$.

Consequently, we obtain

$$f(z) = \sum_{n=2}^{\infty} (x_{n+1} h_{n+1} + y_{n+1} g_{n+1}).$$

Using Theorem 2 it is easily seen that J_H is convex and closed and so

$$CLCH J_H = J_H.$$
4. Covolution Result

For harmonic functions,

\[f(z) = z - \sum_{n=2}^{\infty} a_{n+1} z^{n+1} + \sum_{n=1}^{\infty} b_{n+1} \bar{z}^{n+1} \]

\[G(z) = z - \sum_{n=2}^{\infty} A_{n+1} z^{n+1} + \sum_{n=1}^{\infty} B_{n+1} \bar{z}^{n+1} \]

we define the convolution of \(f \) and \(G \) as,

\[(f \ast G)(z) = f(z) \ast G(z) \]

\[= z - \sum_{n=2}^{\infty} a_{n+1} A_{n+1} z^{n+1} + \sum_{n=1}^{\infty} b_{n+1} B_{n+1} \bar{z}^{n+1} \]

Theorem 4. For \(0 \leq \beta < 1 \) let \(f(z) \in \overline{J}_H(\alpha, \beta, \gamma) \) and \(G(z) \in \overline{J}_H(\alpha, \beta, \gamma) \).

Then

\[f(z) \ast G(z) \in \overline{J}_H(\alpha, \beta, \gamma). \]

Proof. Let

\[f(z) = z - \sum_{n=2}^{\infty} |a_{n+1}| z^{n+1} + \sum_{n=1}^{\infty} |b_{n+1}| \bar{z}^{n+1} \]

be in \(\overline{J}_H(\alpha, \beta, \gamma) \)

and

\[G(z) = z - \sum_{n=2}^{\infty} |A_{n+1}| z^{n+1} + \sum_{n=1}^{\infty} |B_{n+1}| \bar{z}^{n+1} \]

be in \(\overline{J}_H(\alpha, \beta, \gamma) \)

Obviously, the coefficients of \(f \) and \(G \) must satisfy condition similar to the inequality (2.6). So for the coefficients of \(f \ast G \) we can write

\[
\sum_{n=2}^{\infty} \left[\frac{(2n-\beta-\gamma+2)}{(2-\beta-\gamma)} |a_{n+1}A_{n+1}| + \frac{(2n+\beta+\gamma+2)}{(2-\beta-\gamma)} |b_{n+1}B_{n+1}| \right] \\
\leq \sum_{n=2}^{\infty} \left[\frac{(2n-\beta-\gamma+2)}{(2-\beta-\gamma)} |a_{n+1}| + \frac{(2n+\beta+\gamma+2)}{(2-\beta-\gamma)} |b_{n+1}| \right]
\]

The right side of this inequality is bounded by 2 because \(f \in \overline{J}_H(\alpha, \beta, \gamma) \). By the same token, we then conclude that

\[f(z) \ast G(z) \in \overline{J}_H(\alpha, \beta, \gamma). \]

Finally, we show that \(f \in \overline{J}_H(\alpha, \beta, \gamma) \), is closed under convex combination of its members.

Theorem 5. The family \(\overline{J}_H(\alpha, \beta, \gamma) \) is closed under convex combination.
Proof. For \(i = 1, 2, 3 \ldots \) let \(f_i \in \mathcal{J}_H(\alpha, \beta, \gamma) \) where \(f_i \) is given by,
\[
f_i(z) = z - \sum_{n=2}^{\infty} |a_{i(n+1)}| z^{n+1} + \sum_{n=1}^{\infty} |b_{i(n+1)}| z^{n+1}
\]

Then by (2.6),
\[
\sum_{n=2}^{\infty} \left[\frac{(2n - \beta - \gamma + 2)}{(2 - \beta - \gamma)} |a_{i(n+1)}| + \frac{(2n + \beta + \gamma + 2)}{(2 - \beta - \gamma)} |b_{i(n+1)}| \right] \leq 2.
\]

For \(\sum_{i=1}^{\infty} t_i = 1; 0 \leq t_i \leq 1 \), the convex combination of \(f_i \) may be written as,
\[
\sum_{i=1}^{\infty} t_i f_i(z) = z - \sum_{n=2}^{\infty} \left[\sum_{i=1}^{\infty} t_i |a_{i(n+1)}| \right] z^{n+1} + \sum_{n=1}^{\infty} \left[\sum_{i=1}^{\infty} t_i |b_{i(n+1)}| \right] z^{n+1}.
\]

Then by (4.2)
\[
\sum_{n=2}^{\infty} t_i \left[\frac{(2n - \beta - \gamma + 2)}{(2 - \beta - \gamma)} \sum_{i=1}^{\infty} t_i |a_{i(n+1)}| + \frac{(2n + \beta + \gamma + 2)}{(2 - \beta - \gamma)} \sum_{i=1}^{\infty} t_i |b_{i(n+1)}| \right]
\]
\[
\leq 2 \sum_{i=1}^{\infty} t_i = 2.
\]

This is the condition required by (2.6) and so,
\[
\sum_{i=1}^{\infty} t_i f_i(z) \in \mathcal{J}_H(\alpha, \beta, \gamma).
\]

\[\square\]

References

DEPARTMENT OF MATHEMATICS,
MAHARASHTRA ACADEMY OF ENGINEERING,
ALANDI - 412 105, PUNE (M. S.), INDIA
E-mail address: smkhairnar2007@gmail.com
E-mail address: meenamore@maepune.com