SPECIAL REPRESENTATIONS OF SOME SIMPLE GROUPS WITH MINIMAL DEGREES

MARYAM GHRORBANY

Abstract. If F is a subfield of C, then a square matrix over F with non-negative integral trace is called a quasi-permutation matrix over F. For a finite group G, let $q(G)$ and $c(G)$ denote the minimal degree of a faithful representation of G by quasi-permutation matrices over the rational and the complex numbers, respectively. Finally $r(G)$ denotes the minimal degree of a faithful rational valued complex character of G. In this paper $q(G)$, $c(G)$ and $r(G)$ are calculated for Suzuki group and untwisted group of type B_2 with parameter 2^{2n+1}.

1. Introduction

In [12] Wong defined a quasi-permutation group of degree n, to be a finite group G of automorphisms of an n-dimensional complex vector space such that every element of G has non-negative integral trace. The terminology drives from the fact that if G is a finite group of permutations of a set Ω of size n, and we think of G as acting on the complex vector space with basis Ω, then the trace of an element $g \in G$ is equal to the number of points of Ω fixed by g. Wong studied the extent to which some facts about permutation groups generalize to the quasi-permutation group situation. In [2] Hartley with their colleague investigated further the analogy between permutation groups and quasi-permutation groups by studying the relation between the minimal degree of a faithful permutation representation of a given finite group G and the minimal degree of a faithful quasi-permutation representation. They also worked over the rational field and found some interesting results. We shall often prefer to work over the rational field rather than the complex field.

2000 Mathematics Subject Classification. 20C15.

Key words and phrases. Character table, Lie groups, Quasi-permutation representation, Rational valued character, Suzuki group.
By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus every permutation matrix over C is a quasi-permutation matrix. For a given finite group G, let $q(G)$ denote the minimal degree of a faithful representation of G by quasi-permutation matrices over the rational field Q, and let $c(G)$ be the minimal degree of a faithful representation of G by complex quasi-permutation matrices.

By a rational valued character we mean a character χ corresponding to a complex representation of G such that $\chi(g) \in Q$ for all $g \in G$. As the values of the character of a complex representation are algebraic numbers, a rational valued character is in fact integer valued. A quasi-permutation representation of G is then simply a complex representation of G whose character values are rational and non-negative. The module of such a representation will be called a quasi-permutation module. We will call a homomorphism from G to $GL(n, Q)$ a rational representation of G and its corresponding character will be called a rational character of G. Let $r(G)$ denote the minimal degree of a faithful rational valued character of G. It is easy to see that for a finite group G the following inequalities hold

$$r(G) < c(G) \leq q(G).$$

It is easy to see that if G is a symmetric group of degree 6, then $r(G) = 5$ and $c(G) = q(G) = 6$. If G is the quaternion group of order 8, then $r(G) = 2, c(G) = 4$ and $q(G) = 8$. Our principal aim in this paper is to investigate these quantities and inequalities further.

Finding the above quantities have been carried out in some papers, for example in [6, 5, 4] we found these for the groups $GL(2, q)$, $SU(3, q^2)$, $PSU(3, q^2)$, $SL(3, q)$ and $PSL(3, q)$.

In this paper we will apply the algorithms in [1] for the Suzuki group and untwisted group of type B_2 with parameter 2^{2n+1}.

2. Background

Let G be a finite group and χ be an irreducible complex character of G. Let $m_Q(\chi)$ denote the Schur index of χ over Q. Let $\Gamma(\chi)$ be the Galois group of $Q(\chi)$ over Q. It is known that

$$\sum_{\alpha \in \Gamma(\chi)} m_Q(\chi)\chi^\alpha$$

is a character of an irreducible QG-module ([9, Corollary 10.2 (b)]). So by knowing the character table of a group and the Schur indices of each of the irreducible characters of G, we can find the irreducible rational characters of G.

We can see all the following statements in [1].

Definition 1. Let χ be a character of G such that, for all $g \in G$, $\chi(g) \in Q$ and $\chi(g) \geq 0$. Then we say that χ is a non-negative rational valued character.
Definition 2. Let G be a finite group. Let χ be an irreducible complex character of G. Then we define

(1) $d(\chi) = |\Gamma(\chi)|\chi(1)$

(2) $m(\chi) = \begin{cases} 0 & \text{if } \chi = 1_G \\ \min\{\sum_{\alpha \in \Gamma(\chi)} \chi^\alpha(g) : g \in G\} & \text{otherwise} \end{cases}$

(3) $c(\chi) = \sum_{\alpha \in \Gamma(\chi)} \chi^\alpha + m(\chi)1_G$.

Lemma 1. Let χ be a character of G. Then $\text{Ker } \chi = \text{Ker } \sum_{\alpha \in \Gamma(\chi)} \chi^\alpha$. Moreover χ is faithful if and only if $\sum_{\alpha \in \Gamma(\chi)} \chi^\alpha$ is faithful.

Lemma 2. Let $\chi \in \text{Irr}(G)$, then $\sum_{\alpha \in \Gamma(\chi)} \chi^\alpha$ is a rational valued character of G. Moreover $c(\chi)$ is a non-negative rational valued character of G and $c(\chi)(1) = d(\chi) + m(\chi)$.

Now according to [1, Corollary 3.11] and above statements the following Corollary is useful for calculation of $r(G)$, $c(G)$ and $q(G)$.

Corollary 1. Let G be a finite group with a unique minimal normal subgroup. Then

(1) $r(G) = \min\{d(\chi) : \chi$ is a faithful irreducible complex character of $G\}$

(2) $c(G) = \min\{c(\chi)(1) : \chi$ is a faithful irreducible complex character of $G\}$

(3) $q(G) = \min\{mQ(c(\chi)(1)) : \chi$ is a faithful irreducible complex character of $G\}$.

Lemma 3. Let $\chi \in \text{Irr}(G)$ $\chi \neq 1_G$. Then $c(\chi)(1) \geq d(\chi) + 1 \geq \chi(1) + 1$.

Lemma 4. Let $\chi \in \text{Irr}(G)$. Then

(1) $c(\chi)(1) \geq d(\chi) \geq \chi(1)$;

(2) $c(\chi)(1) \leq 2d(\chi)$. Equality occurs if and only if $Z(\chi)/\ker \chi$ is of even order.

Lemma 5. Let G be a finite group. If the Schur index of each non-principal irreducible character is equal to m, then $q(G) = mc(G)$.

3. Calculation of $q(G), c(G)$ and $r(G)$ for the group $G = B_2(q)$

The group $G = B_2(q)$ is of order $\frac{q^4(q^4-1)(q^2-1)}{(2,q-1)}$ and if the characteristic of K is two, the Lie algebras of type B_n and of type C_n are isomorphic. The complex character table of $B_2(q)$ is given in [7] as in Table 1.
Table 1. Character table of $B_2(q)$

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
<th>A_{31}</th>
<th>A_{32}</th>
<th>A_{41}</th>
<th>A_{42}</th>
<th>$B_1(i,j)$</th>
<th>$B_2(i)$</th>
<th>$B_3(i,j)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_1</td>
<td>$q(q+1)^2/2$</td>
<td>$q(q+1)/2$</td>
<td>$q/2$</td>
<td>$q/2$</td>
<td>$-q/2$</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>θ_2</td>
<td>q^4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>θ_5</td>
<td>$q(q-1)^2/2$</td>
<td>$-q(q-1)/2$</td>
<td>$-q(q-1)/2$</td>
<td>$q/2$</td>
<td>$q/2$</td>
<td>$-q/2$</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\chi_1(k,l)$</td>
<td>$(q+1)^2(q^2+1)$</td>
<td>$(q+1)^2$</td>
<td>$(q+1)^2$</td>
<td>$2q+1$</td>
<td>1</td>
<td>1</td>
<td>$\alpha_{ik}\alpha_{jl} + \alpha_{il}\alpha_{jk}$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\chi_4(k,l)$</td>
<td>$(q-1)^2(q^2+1)$</td>
<td>$(q-1)^2$</td>
<td>$(q-1)^2$</td>
<td>$-(2q-1)$</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>χ_k</td>
<td>$(q^2-1)^2$</td>
<td>$-(q^2-1)^2$</td>
<td>$-(q^2-1)$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$B_5(i)$</th>
<th>$C_1(i)$</th>
<th>$C_2(i)$</th>
<th>$C_3(i)$</th>
<th>$C_4(i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_1</td>
<td>-1</td>
<td>$q+1$</td>
<td>$q+1$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>θ_4</td>
<td>1</td>
<td>q</td>
<td>q</td>
<td>$-q$</td>
<td>$-q$</td>
</tr>
<tr>
<td>θ_5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>$q-1$</td>
<td>$q-1$</td>
</tr>
<tr>
<td>$\chi_1(k,l)$</td>
<td>0</td>
<td>$(q+1)(\alpha_{ik} + \alpha_{il})$</td>
<td>$(q+1)\alpha_{ik}\alpha_{il}$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\chi_4(k,l)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$-(q-1)(\beta_{ik} + \beta_{il})$</td>
<td>$-(q-1)\beta_{ik}\beta_{il}$</td>
</tr>
<tr>
<td>χ_k</td>
<td>$\tau^{ik} + \tau^{-ik} + \tau^{ikq} + \tau^{-ikq}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$B_4(i,j)$</th>
<th>$D_1(i)$</th>
<th>$D_2(i)$</th>
<th>$D_3(i)$</th>
<th>$D_4(i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>θ_4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>θ_5</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>$\chi_1(k,l)$</td>
<td>0</td>
<td>$\alpha_{ik} + \alpha_{il}$</td>
<td>$\alpha_{ik}\alpha_{il}$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\chi_4(k,l)$</td>
<td>$\beta_{ik}\beta_{jl} + \beta_{il}\beta_{jk}$</td>
<td>0</td>
<td>0</td>
<td>$\beta_{ik} + \beta_{il}$</td>
<td>$\beta_{ik}\beta_{il}$</td>
</tr>
<tr>
<td>χ_k</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
by Definition 2.2 and Lemma 2.4 we have

Theorem 2.

Let θ be a character and calculate $r(G)$, $c(G)$ for $G = B_2(2)$.

Proof. We know that $G = B_2(2)$ and by the Atlas of finite groups [6], it is easy to see that

$$r(B_2(2)) = 5, \quad c(B_2(2)) = 6.$$

An overall picture is provided by the Table 2

<table>
<thead>
<tr>
<th>χ</th>
<th>$d(\chi)$</th>
<th>$c(\chi)(1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_1</td>
<td>$q(q+1)^2$</td>
<td>$\frac{q^2+2q+2}{2}$</td>
</tr>
<tr>
<td>θ_4</td>
<td>q^4</td>
<td>$q(q^4+1)$</td>
</tr>
<tr>
<td>θ_5</td>
<td>$q(q-1)^2$</td>
<td>$q^3(q-1)$</td>
</tr>
<tr>
<td>$\chi_{1}(k,l)$</td>
<td>$(q+1)^2(q^2+1)$</td>
<td>$(q+1)^2(q^2+1)+1$</td>
</tr>
<tr>
<td>$\chi_{4}(k,l)$</td>
<td>$(q-1)^2(q^2+1)$</td>
<td>$q^2(q^2-2q+2)$</td>
</tr>
<tr>
<td>$\chi_{5}(k)$</td>
<td>$(q^2-1)^2$</td>
<td>$q^2(q^2-1)$</td>
</tr>
</tbody>
</table>

Theorem 1. Let $G = B_2(2)$, then

$$r(B_2(2)) = 5, \quad c(B_2(2)) = 6.$$

Proof. We know that $G = B_2(2)$ and by the Atlas of finite groups [6], it is easy to see that

$$r(B_2(2)) = 5, \quad c(B_2(2)) = 6.$$

Theorem 2. Let $G = B_2(q)$, $q \neq 2$, then

1. $r(G) = \frac{q(q-1)^2}{2}$
2. $c(G) = \frac{q^2(q-1)^2}{2}$

Proof. The group $G = B_2(q)$, $q \neq 2$ is simple so their non-trivial irreducible characters are faithful and therefore we need to look at each faithful irreducible character χ and calculate $d(\chi), c(\chi)(1)$.

By the Table 1, we know that $\theta_1, \theta_4, \theta_5$ are rational valued characters, so by Definition 2.2 and Lemma 2.4 we have

$$d(\theta_1) = |\Gamma(\theta_1)|\theta_1(1) = \frac{q^2+2q+2}{2}$$
$$m(\theta_1) = -\frac{q}{2}$$
$$d(\theta_4) = |\Gamma(\theta_4)|\theta_4(1) = q^4$$
$$m(\theta_4) = -q$$
$$d(\theta_5) = |\Gamma(\theta_5)|\theta_5(1) = \frac{q^2(q-1)}{2}$$
$$m(\theta_5) = -\frac{q^2(q-1)}{2}$$

$$c(\theta_5)(1) = \frac{q^2(q-1)}{2}$$

For other characters by Lemmas 2.6, 2.7 we have

$$d(\chi_{1}(k,l)) = |\Gamma(\chi_{1}(k,l))|\chi_{1}(k,l)(1) \geq (q+1)^2(q^2+1)$$
and $m(\chi_{1}(k,l)) \geq 1$ and so $c(\chi_{1}(k,l))(1) \geq (q+1)^2(q^2+1)+1.$

$$d(\chi_{4}(k,l)) \geq (q-1)^2(q^2+1)$$
and $m(\chi_{4}(k,l)) \geq 2q-1$ and so

$$c(\chi_{4}(k,l))(1) \geq q^2(q^2-2q+2).$$

$$d(\chi_{5}(k)) \geq (q^2-1)^2$$
and $m(\chi_{5}(k)) \geq q^2-1$ and so $c(\chi_{5}(k))(1) \geq q^2(q^2-1).$

An overall picture is provided by the Table 2.
Now by Corollary 2.5 and above table we obtain

\[\min \{ d(\chi) : \chi \text{ is a faithful irreducible complex character of } G \} = \frac{q(q-1)^2}{2} \]

and

\[\min \{ c(\chi)(1) : \chi \text{ is a faithful irreducible complex character of } G \} = \frac{q^2(q-1)}{2}. \]

\[\square \]

4. Quasi-permutation representations of the group \(Sz(q) \)

A group \(G \) is called a \((ZT)\)-group if:

1. \(G \) is a doubly transitive group on \(1 + N \) symbols,
2. the identity is the only element which leaves three distinct symbols invariant,
3. \(G \) contains no normal subgroup of order \(1 + N \), and
4. \(N \) is even.

There is a unique \((ZT)\)-group of order \(q^2(q-1)(q^2+1) \) for any odd power \(q \) of \(2 \) (see \([11, \text{Theorem 8}]\)). This group will be denoted here as \(Sz(q) \) and called a Suzuki group. The Suzuki groups are simple for all \(q > 2 \).

By \([10]\) the Suzuki group \(G(q) \) is isomorphic to a subgroup of \(SP_4(F_q) \) consisting of points left fixed by an involutive mapping of \(SP_4(F_q) \) onto itself.

Now we shall identify \(SP_4(K)^\sigma \) with the Suzuki group \(G(q) \), where \(SP_4(K)^\sigma \) is the set composed of all \(x \in SP_4(K) \) such that \(x^\sigma = x \).

Let \(K = F_q, q = 2^{2n+1} (n \geq 1) \) and let \(\theta \) be an automorphism of \(K \) defined by \(\alpha \to \alpha^{2^n}, \alpha \in K \). It is easy to see that \(\theta \) generates the Galois group of \(K \) over the prime field. Our purpose is to define an involutive mapping \(\sigma \) (which will not be an automorphism) of \(SP_4(K) \) onto itself by making use of \(\varphi \) and \(\theta \) so that the Suzuki group \(G(q) \) is isomorphic to the subgroup \(SP_4(K)^\sigma \) of \(SP_4(K) \) consisting of matrices left fixed by \(\sigma \).

Using Suzuki’s notation, \(G(q) \) is generated by \(S(\alpha, \beta), M(\xi) \) and \(T \):

\[S(\alpha, \beta) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ \alpha^\theta & 1 & 0 & 0 \\ \beta & \alpha & 1 & 0 \\ q(\alpha, \beta) p(\alpha, \beta) \alpha^\theta & 1 \end{pmatrix}, \]

\[M(\xi) = \operatorname{diag}(\xi^\theta, \xi^{1-\theta}, \xi^{\theta-1}, \xi^{-\theta}), \]

\[T = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}. \]
Define a matrix \(P \) by setting:
\[
P = \begin{pmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{pmatrix}
\]

Then, one can easily verify that
\[
PS(\alpha, \beta)P^{-1} = R(\alpha, \beta)^{-1}, \quad PM(\xi)P^{-1} = h(\xi^\theta), \quad PTP^{-1} = J.
\]

Thus \(x \to PxP^{-1} \) gives an isomorphism \(G(q) \cong SP_4(K)^\sigma \). So Suzuki group is a simple group of order \(q^2(q - 1)(q^2 + 1) \).

Remark 1. The involution \(\sigma: SP_4(K) \to SP_4(K) \) can not be an automorphism. For, if \(\sigma \) is so, then \(\sigma \) can be expressed as
\[
x^\sigma = Ax^\omega A^{-1},
\]
with \(A \in GL_4(K) \) and an automorphism \(\omega \) of \(K \). Put \(x = x_a(t) = I + tX_a \).
Then \(x^\sigma = x_b(t^{2\theta}) = I + t^{2\theta}X_b = I + t^\omega AX_aA^{-1} \). If we take \(t = 1 \), then \(X_b = AX_aA^{-1} \). But this is absurd since \(X_a = E_{12} - E_{43} \) is of rank 2 and \(X_b = E_{24} \) is of rank 1.

The character table of \(Sz(q) \) is computed in [11], is as follows:
Table 3. Character table of \(Sz(q) \)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>(\sigma_0)</th>
<th>(\rho_0)</th>
<th>(\rho_0^{-1})</th>
<th>(\pi_0^1)</th>
<th>(\pi_1^1)</th>
<th>(\pi_2^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(\chi)</td>
<td>(\theta(q - 1))</td>
<td>(\theta)</td>
<td>(\theta \sqrt{-1})</td>
<td>(-\theta \sqrt{-1})</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>(\zeta)</td>
<td>(\theta(q - 1))</td>
<td>(-\theta)</td>
<td>(-\theta \sqrt{-1})</td>
<td>(\theta \sqrt{-1})</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>(\psi_i)</td>
<td>(q^2 + 1)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(\varepsilon_j^i(\pi_0^1))</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\mu_j)</td>
<td>((q - 2\theta + 1)(q - 1))</td>
<td>(2\theta - 1)</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>(-\varepsilon_j^i(\pi_1^1))</td>
<td>0</td>
</tr>
<tr>
<td>(\varphi_k)</td>
<td>((q + 2\theta + 1)(q - 1))</td>
<td>(-2\theta - 1)</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>(-\varepsilon_j^k(\pi_2^1))</td>
</tr>
</tbody>
</table>
Where ε_0, ε_1, ε_2 are primitive $q - 1$, $q + 2\theta + 1$, $q - 2\theta + 1$-th root of 1, respectively.

In this table $q = 2\theta^2$ and the ε_i^j are defined as follows:

$$
\varepsilon_0^i(\xi_0^j) = \varepsilon_0^{ij} + \varepsilon_0^{-ij} \text{ for } i = 1, 2, \ldots, q/2 - 1,
$$

where ξ_0 is a generator of cyclic group of order $q - 1$.

$$
\varepsilon_1^i(\xi_1^j) = \varepsilon_1^{ik} + \varepsilon_1^{-ik} + \varepsilon_1^{-ikq} \text{ for } i = 1, 2, \ldots, q + 2\theta
$$

where ξ_1 is a generator of cyclic group of order $q + 2\theta + 1$.

$$
\varepsilon_2^i(\xi_2^j) = \varepsilon_2^{ik} + \varepsilon_2^{-ik} + \varepsilon_2^{-ikq} \text{ for } i = 1, 2, \ldots, q + 2\theta
$$

where ξ_2 is a generator of cyclic group of order $q - 2\theta + 1$.

Lemma 6. Let $G = Sz(q)$, $q = 2^{2n+1}$, then all characters of G have Schur index 1.

Proof. See [8, Theorem 9].

Theorem 3. Let $G = Sz(q)$, $q = 2^{2n+1}$, then $r(G) = 2\theta(q - 1)$, $c(G) = q(G) = 2\theta q$, where $\theta = 2^n$ and $q = 2\theta^2$.

Proof. Let $G = Sz(q)$, $q = 2^{2n+1}$, by Lemma 4.1 the Schur index of every irreducible character is 1, therefore $c(G) = q(G)$. The groups $G = Sz(q)$ is simple, so their non-trivial irreducible characters are faithful and therefore we need to look at each faithful irreducible character ϑ say and calculate $d(\vartheta), c(\vartheta)(1)$.

By Table 3 we know χ is a rational valued character, so by Definition 2.2 and Lemma 2.4 we have:

$$
d(\chi) = |\Gamma(\chi)|\chi(1) = q^2,
$$

and $m(\chi) = 1$, and so $c(\chi)(1) = q^2 + 1$.

For the character ζ we have $|\Gamma(\zeta)| = 2$ and therefore:

$$
d(\zeta) = |\Gamma(\zeta)|\zeta(1) = 2\theta(q - 1),
$$

and $m(\zeta) = 2\theta$, and so $c(\zeta)(1) = 2\theta q$.

In this way, by Lemmas 2.6, 2.7 we have

$$
d(\psi_i) \geq q^2 + 1
$$

and $c(\psi_i) \geq q^2 + 2$,

$$
d(\mu_j) \geq (q - 2\theta + 1)(q - 1)
$$

and $c(\mu_j) \geq q^2 - 2\theta q + 2\theta$, $d(\varphi_k) \geq (q + 2\theta + 1)(q - 1)$ and $c(\varphi_k) \geq q(q + 2\theta)$.

The values are set out in the following table:

<table>
<thead>
<tr>
<th>Character</th>
<th>$d(\chi)$</th>
<th>$c(\chi)(1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ψ_i</td>
<td>$q^2 + 1$</td>
<td>$q^2 + 2$</td>
</tr>
<tr>
<td>μ_j</td>
<td>$q^2 - 2\theta q + 2\theta$</td>
<td>$q\theta$</td>
</tr>
<tr>
<td>φ_k</td>
<td>$q(q + 2\theta)$</td>
<td>$q\theta$</td>
</tr>
</tbody>
</table>

By observing the Corollary 2.5 and Table 4 we have:

$$
\min\{d(\chi) : \chi \text{ is a faithful irreducible complex character of } G\} = 2\theta(q - 1)
$$

and

$$
\min\{c(\chi)(1) : \chi \text{ is a faithful irreducible complex character of } G\} = 2\theta q.
$$
Table 4

<table>
<thead>
<tr>
<th>d(ϑ)</th>
<th>c(ϑ)(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϑd(ϑ)</td>
<td>ϑ(ϑ+1)</td>
</tr>
<tr>
<td>χ + q^2</td>
<td>q^2 + 1</td>
</tr>
<tr>
<td>ζ + 2θ(q-1)</td>
<td>2θq</td>
</tr>
<tr>
<td>ψi ≥ q^2 + 1</td>
<td>q^2 + 1</td>
</tr>
<tr>
<td>µj ≥ (q−2θ+1)(q−1)</td>
<td>≥ q^2−2θq+2θ</td>
</tr>
<tr>
<td>φk ≥ (q + 2θ)(q−1)</td>
<td>≥ q(q + 2θ)</td>
</tr>
</tbody>
</table>

Hence r(G) = 2θ(q−1), c(G) = q(G) = 2θq.

References

Department of Mathematics, Iran University of Science and Technology, Emam, Behshahr, Mazandaran, Iran

E-mail address: m-ghorbani@iust.ac.ir