ON A CLASS OF LIE p-ALGEBRAS

CAMELIA CIOBANU

Abstract. In this paper we study the finite dimensional Lie p-algebras, \(L \) splitting on its abelian p-socle, the sum of its minimal abelian p-ideals. In addition, some properties of the Frattini p-subalgebra of \(L \) are pointed out.

1. Introduction

In this section, we recall some notions and properties necessary in the paper.

Definition 1.1. A Lie p-algebra is a Lie algebra \(L \) with a p-map \(a \rightarrow a^p \), such that:

\[
\begin{align*}
(\alpha x)^p &= \alpha^p x^p, \text{ for all } \alpha \in \mathbb{K}, x \in L, \\
x(ady)^p &= x(ady)^p, \text{ for all, } x, y \in L, \\
(x + y)^p &= x^p + y^p + \sum_{i=1}^{p-1} s_i(x, y) \text{ for all } x, y \in L,
\end{align*}
\]

where \(s_i(x, y) \) is the coefficient of \(X^{i-1} \) in the expansion of \(x(ad(Xu + y))^{p-1} \).

A subalgebra (respectively, ideal) of \(L \) is p-subalgebra (respectively, p-ideal) if it is closed under the p-map.

The notions of maximal p-subalgebra respectively maximal p-ideal of \(L \) are defined as usual. The intersection of p-subalgebras (respectively p-ideals) is a p-subalgebra (respectively a p-ideal) of \(L \).

We denote by \(\Phi_p(L) \) the p-subalgebra of \(L \) obtained by intersecting all maximal p-subalgebras of \(L \) and we call it the Frattini p-subalgebra of \(L \).

The largest p-ideal of \(L \) included into \(\Phi_p(L) \) is called the Frattini p-ideal and is denoted by \(F_p(L) \).

2000 Mathematics Subject Classification. 17B60, 17B66, 17B20.

Key words and phrases. Finite dimensional Lie p-algebra, p-ideal, p-subalgebra.

This paper was supported by the GAR 12/2007 - Contract 103/2008.
These are the corresponding notions to the Frattini subalgebra $\Phi(\mathcal{L})$ and the Frattini ideal $\mathcal{F}(\mathcal{L})$ for a Lie algebra.

We shall use the following notations:

- $[x, y]$ is the product of x, y in \mathcal{L};
- $\mathcal{L}^{(1)}$ the derived algebra of \mathcal{L};
- $\mathcal{L}^{(n)} = \left(\mathcal{L}^{(n-1)}\right)^{(1)}$, for all $n \geq 2$;
- \mathcal{A} is the subalgebra generated by the subset \mathcal{A} of \mathcal{L};
- $\mathcal{A}_p = \{x^p \mid x \in \mathcal{A}, p \in \mathbb{N}\}$, where $x^p = x^{(p)}$;
- $\mathcal{A}_p^n = \left(\mathcal{A}_p^{n-1}\right)^p$;
- $\mathcal{L}_1 = \bigcap_{i=1}^{\infty} \mathcal{L}^p$;
- $\mathcal{L}_0 = \{x \in \mathcal{L} \mid x^p = 0 \text{ for some } n\}$;
- $Z(\mathcal{L})$ is the center of \mathcal{L};
- $\mathcal{N}(\mathcal{L})$ is the nilradical of \mathcal{L}.

Note that, if \mathcal{L} is a p-algebra (finite dimensional), then $Z(\mathcal{L})$ is closed as p-ideal of \mathcal{L}.

2. Lie p-algebras which are \mathcal{F}_p-free

In [8], Stitzinger has proved the following

Proposition 2.1. If \mathcal{L} is a finite dimensional Lie algebra over a field \mathbb{K}, then

$$\mathcal{L}^{(1)} \cap Z(\mathcal{L}) \subseteq \mathcal{F}(\mathcal{L}).$$

We may prove an analogue of this proposition for a Lie p-algebra.

Lemma 2.2. If \mathcal{L} is a finite dimensional Lie p-algebra over a field \mathbb{K}, then we have

$$\left(\mathcal{L}^{(1)}\right)_p \cap Z(\mathcal{L}) \subseteq \mathcal{F}_p(\mathcal{L}).$$

Proof. Let \mathcal{M} be a maximal p-subalgebra of \mathcal{L} and suppose that $Z(\mathcal{L}) \nsubseteq \mathcal{M}$. Then $\mathcal{L} = \mathcal{M} + Z(\mathcal{L})$, so $\mathcal{L}^{(1)} = \mathcal{M}^{(1)} \subseteq \mathcal{M}$ and hence

$$\left(\mathcal{L}^{(1)}\right)_p \subseteq \left(\mathcal{M}\right)_p \subseteq \mathcal{M}.$$

The *abelian socle* $\text{Sa}(\mathcal{L})$ is the sum of all minimal ideals of \mathcal{L}.

We may define the abelian p-socle of the finite dimensional Lie p-algebra \mathcal{L} as being the sum of all minimal abelian p-ideals of \mathcal{L} and we denote it by $\text{Sap}(\mathcal{L})$.

The abelian socle (respectively, the abelian p-socle) of a finite dimensional Lie (p)-algebra is an ideal (a p-ideal) of \mathcal{L}, as one can show easily.
Definition 2.3. Let \mathcal{L} be a finite dimensional Lie p-algebra and I be a p-ideal of \mathcal{L}. We say that \mathcal{L} p-splits over I if there exists a p-subalgebra B of \mathcal{L} such that $\mathcal{L} = I + B$.

B is called a p-complement of the p-ideal I.

Theorem 2.4. Let \mathcal{L} be a finite dimensional Lie p-algebra such that $\mathcal{L}^{(1)} \neq 0$ and $\mathcal{L}^{(1)}$ is nilpotent. Then the following statements are equivalent:

(i) $\mathcal{F}_p(\mathcal{L}) = 0$.
(ii) $\text{Sap}(\mathcal{L}) = \mathcal{N}(\mathcal{L})$, and \mathcal{L} p-splits over $\mathcal{N}(\mathcal{L})$.
(iii) $\mathcal{L}^{(1)}$ is abelian, $(\mathcal{L}^{(1)})^p = 0$, \mathcal{L} p-splits over $\mathcal{L}^{(1)} \oplus Z(\mathcal{L})$, and

$$\text{Sap}(\mathcal{L}) = \mathcal{L}^{(1)} \oplus Z(\mathcal{L}).$$

In the same hypotheses, the Cartan subalgebra of \mathcal{L} are exactly those subalgebras which have $\mathcal{L}^{(1)}$ as a p-complement.

Proof. (i) \Rightarrow (ii): These implications are immediate from Theorems 4.1, 4.2 of [5].

(iii) \Rightarrow (i): This also follows from Theorem 4.1 of [5].

(i) \Rightarrow (iii): Suppose that $\mathcal{F}_p(\mathcal{L}) = 0$. Then $\mathcal{F}(\mathcal{L}) = 0$, and $\mathcal{L}^{(1)}$ is abelian. Now $(\mathcal{L}^{(1)})^p \subseteq Z(\mathcal{L})$ by Lemma 2.1 [6], and so

$$(\mathcal{L}^{(1)})^p \subseteq (\mathcal{L}^{(1)})^p \cap Z(\mathcal{L}) \subseteq (\mathcal{L}^{(1)})^p \cap Z(\mathcal{L}) \subseteq \mathcal{F}_p(\mathcal{L}) = 0,$$

by Lemma 2.2. Clearly $\mathcal{L}^{(1)} \oplus Z(\mathcal{L}) \subseteq \mathcal{N}(\mathcal{L}) = \text{Sap}(\mathcal{L})$.

Now let \overline{m} be a minimal (and hence abelian) p-ideal of \mathcal{L}. Then $[\mathcal{L}, \overline{m}] = m$ is an ideal of \mathcal{L} and

$$[\mathcal{L}, \overline{m}]^p \subseteq (\mathcal{L}^{(1)})^p \cap m^p \subseteq (\mathcal{L}^{(1)})^p \cap Z(\mathcal{L}) = 0$$

by Lemma 2.1 of [6] and by Lemma 2.2. Hence $[\mathcal{L}, \overline{m}]$ is p-closed, therefore $[\mathcal{L}, \overline{m}] = m$ or $[\mathcal{L}, \overline{m}] = 0$.

The former implies that $\overline{m} \subseteq \mathcal{L}^{(1)}$, and the latter that $\overline{m} \subseteq Z(\mathcal{L})$ hence $\text{Sap}(\mathcal{L}) = \mathcal{L}^{(1)} \oplus Z(\mathcal{L})$ and (iii) follows.

The last part of the theorem precises that the Cartan subalgebras are exactly those subalgebras having $\mathcal{L}^{(1)}$ as a p-complement. This follows from Proposition 1 of [8], or from Theorem 4.4.1.1. of [10] and from the fact that Cartan subalgebras are p-closed. □

Corollary 2.5. If \mathcal{L} is a finite dimensional Lie p-algebra over \mathbb{K} with $\mathcal{L}^{(1)}$ nilpotent, and nonzero $\mathcal{F}_p(\mathcal{L}) = 0$ and \mathbb{K} is perfect, then the maximal toral subalgebras are precisely those having as p-complement $\mathcal{L}^{(1)} \oplus Z(\mathcal{L})$.

Proof. Take $\mathcal{L} = (\mathcal{L}^{(1)} \oplus Z(\mathcal{L})) + B$, with Bp-closed and $B^{(1)} = 0$ and let $B = B_0 \oplus B_1$ be the Fitting decomposition of B relatively to the p-map. Then $\mathcal{L}^{(1)} \oplus Z(\mathcal{L}) = \text{Sap}(\mathcal{L}) = \mathcal{N}(\mathcal{L})$ from Theorem 2.4, (ii), (iii). But $\mathcal{L}^{(1)} \oplus Z(\mathcal{L}) + B_0$
is a nilpotent ideal of \(\mathcal{L} \) and so \(B_0 \subseteq \mathcal{N}(\mathcal{L}) \cap B = 0 \). Hence \(B = B_1 \) is toral. It is clear that \(B_1 + Z(\mathcal{L})_1 \) is a maximal toral subalgebra of \(\mathcal{L} \).

Finally, let \(T \) be any maximal torus of \(\mathcal{L} \), and let \(\mathcal{C} = Z_{\mathcal{L}}(T) \). Then \(\mathcal{C} \) is a Cartan subalgebra of \(\mathcal{L} \), (by Theorem 4.5.17 of [10]) and \(\mathcal{L} = \mathcal{L}^{(1)} + \mathcal{C} \) as above. Clearly we can write \(\mathcal{C} = C_0 \oplus T \). But now \(\mathcal{L}^{(1)} + C_0 \) is a nilpotent ideal of \(\mathcal{L} \), and so \(C_0 \subseteq \mathcal{N}(\mathcal{L}) \cap \mathcal{C} = Z(\mathcal{L}) \), making \(T \) a \(p \)-complement of \(\mathcal{L}^{(1)} \oplus Z(\mathcal{L})_0 \). \(\square\)

The condition “\(\text{Sap}(\mathcal{L}) = \mathcal{L}^{(1)} \oplus Z(\mathcal{L}) \)” in (iii) Theorem 2.4. cannot be weakened to “\(Z(\mathcal{L}) \subseteq \text{Sap}(\mathcal{L}) \)”, as the following example proves.

Example 1. We know which are the Lie algebras of dimension 2 over \(\mathbb{K} \) and we take \(\mathcal{L} = I + V \), where

\[
I = \mathbb{K}a + \mathbb{K}b, \quad V = \mathbb{K}v_1 + \mathbb{K}v_2, \\
v_1^p = v_2^p = b^p = 0, \quad a^p = 0, \\
[V, V] = 0, \quad [a, b] = 0, \quad [a, v_1] = v_1, \quad [a, v_2] = v_2, \quad [b, v_1] = v_2, \quad [b, v_2] = 0.
\]

Then \(\mathcal{L}^{(1)} = V \) is abelian, \((\mathcal{L}^{(1)})^p = 0, Z(\mathcal{L}) = 0 \). Now

\[
\mathcal{N}(\mathcal{L}) = \mathbb{K}b + \mathbb{K}v_1 + \mathbb{K}v_2.
\]

Also \(\mathbb{K}v_2 \) is a maximal \(p \)-ideal. Let \(J \) be a minimal \(p \)-ideal contained in \(\mathcal{N}(\mathcal{L}) \). Since \([\mathcal{N}(\mathcal{L}), \mathcal{N}(\mathcal{L})] = \mathbb{K}v_2 \), either \(J = \mathbb{K}v_2 \) or \([\mathcal{N}(\mathcal{L}), J] = 0 \). Suppose that \(J \neq \mathbb{K}v_2 \). Then \([b, J] = 0 \) so \(J \subseteq \mathbb{K}b + \mathbb{K}v_2 \), and \([v_1, J] = 0 \) so \(J \subseteq \mathbb{K}v_1 + \mathbb{K}v_2 \). Thus \(J \subseteq \mathbb{K}v_2 \), a contradiction. Hence \(\mathcal{N}(\mathcal{L}) \neq \text{Sap}(\mathcal{L}) \).

E. L. Stitzinger has shown that, for any Lie algebra \(\mathcal{L} \) over the arbitrary field \(\mathbb{K} \), such that \(\mathcal{L}^{(1)} \) is nilpotent, \(\mathcal{L} \) is \(\mathcal{F} \)-free (that is \(\mathcal{F}(\mathcal{L}) = 0 \)) if and only if each subalgebra of \(\mathcal{L} \) is \(\mathcal{F} \)-free.

The complete analogue of this result does not hold if \(\mathcal{F}(\mathcal{L}) \) is replaced by \(\mathcal{F}_p(\mathcal{L}) \), as the following example proves.

Example 2. Let \(\mathcal{L} = \mathbb{K}a + \mathbb{K}b + \mathbb{K}v_1 + \mathbb{K}v_2 \) with \(\mathbb{K} = Z_2 \),

\[
a^2 = a, \quad b^2 = a + b, \quad [a, v_1] = v_1, \quad [a, v_2] = v_2, \quad [b, v_1] = v_2, \quad [b, v_2] = v_1 + v_2,
\]

\[
[a, b] = [v_1, v_2] = 0, \quad v_1^2 = v_2^2 = 0,
\]

and \(I = \mathbb{K}a + \mathbb{K}b \). We get \(\mathcal{F}_p(\mathcal{L}) = 0 \) where as \(\mathcal{F}_p(I) = \mathbb{K}a \).

However some partial results can be obtained.

Theorem 2.6. Let \(\mathcal{L} \) be a finite-dimensional \(p \)-Lie algebra. Then the following statements are equivalent:

(i) \(\mathcal{L}^{(1)} \) is nilpotent and \(\mathcal{F}_p(\mathcal{L}) = 0 \).

(ii) \(\mathcal{L} = I + B \) where \(B \) is an abelian subalgebra, \(I \) is an abelian \(p \)-ideal, the (adjoint) action of \(B \) on \(I \) is faithful and completely reducible, \(Z(\mathcal{L}) \) is completely reducible under the \(p \)-map, and the \(p \)-map is trivial on \([B, I]\).
ON A CLASS OF LIE p-ALGEBRAS

283

Proof. (i) \Rightarrow (ii) By Theorem 2.4, $\mathcal{L} = I + B$, where

$$I = \text{Sap}(\mathcal{L}) = I_1 \oplus \cdots \oplus I_n,$$

with I_i is a minimal p-ideal of \mathcal{L}, for $i = 1, 2, \ldots, n$, and B is a p-subalgebra of \mathcal{L}. Now $Z_B(I) = \{x \in B | [x, B] = 0\}$ is an ideal in the solvable Lie algebra \mathcal{L}. If $Z_B(I) \neq 0$, it follows that

$$0 \neq Z_B(I) \cap \text{Sap}(\mathcal{L}) \subseteq B \cap I = 0,$$

which is a contradiction. Hence $Z_B(I) = 0$ and the action of B is faithful.

Now suppose that $I_i \not\subset Z(\mathcal{L})$. Then $I_i \cap Z(\mathcal{L}) \subset I_i$ and so, as $I_i \cap Z(\mathcal{L})$ is a p-ideal, $I_i \cap Z(\mathcal{L}) = 0$. If $a \in I_i$ then $(ad)a^p = 0$, and so $a^p = 0$, hence $a \in Z(\mathcal{L})$. Thus, if $a \in I_i \cap Z(\mathcal{L}) = 0$, and the minimality of I_i implies that I_i is an irreducible B-module but, of course, if $I_i \subseteq Z(\mathcal{L})$ then I_i is a completely reducible B-module, so $I = I_1 \oplus \cdots \oplus I_n$ is a completely reducible B-module.

Now $\mathcal{L}^{(1)}$ is nilpotent, therefore $ad x$ is nilpotent, for every $x \in B^{(1)}$. It follows from Engel’s Theorem that $[B^{(1)}, I_i] \subseteq I_i$ for every $i = 1, 2, \ldots, n$. If $I_i \not\subset Z(\mathcal{L})$, this implies that $[B^{(1)}, I_i] = 0$, since I_i is an irreducible B-module.

If $I_i \subseteq Z(\mathcal{L})$ then, clearly, $[B^{(1)}, I_i] = 0$ also. Thus $[B^{(1)}, I_i] = 0$, and so $B^{(1)} = 0$, as $Z_B(I) = 0$. Moreover, $Z(\mathcal{L}) \subseteq I$, since $Z_B(I) = 0$. If $a \in Z(\mathcal{L})$ and $a = a_1 + \cdots + a_n$, with $a_i \in I_i$, then $[x, a_1] + \cdots + [x, a_n] = 0$, for all $x \in \mathcal{L}$, so each $a_i \in Z(\mathcal{L})$. Hence $Z(\mathcal{L}) = \Sigma I_i$, where the sum is over all I_i contained in $Z(\mathcal{L})$. Since \mathcal{L} is a minimal p-ideal, $Z(\mathcal{L})$ must be irreducible under the p-map.

(ii) \Rightarrow (i). In view of Theorem 4.1. of [5], it suffices to show that $I = \text{Sap}(\mathcal{L})$. Now we have $I = [B, I] \oplus Z(\mathcal{L})$, $[B, I]$ is a direct sum of irreducible B-modules (each of which is a minimal p-ideal) and $Z(\mathcal{L})$ is a direct sum of irreducible subspaces for the p-map (each of which is a minimal p-ideal). Thus, $I \subseteq \text{Sap}(\mathcal{L})$. But, as B acts faithfully on \mathcal{L}, I is a maximal abelian ideal. Hence $I = \text{Sap}(\mathcal{L})$, as required.

Corollary 2.7. Let \mathcal{L} be a finite dimensional Lie p-algebra with $\mathcal{L}^{(1)}$ nilpotent and $\mathcal{F}_p(\mathcal{L}) = 0$. Let P be a p-subalgebra of \mathcal{L} containing $\text{Sap}(\mathcal{L})$. Then $\mathcal{F}_p(P) = 0$.

Proof. Write $\mathcal{L} = I + B$ as in Theorem 2.4 (ii). Then $P = I + (B \cap P)$ since $I = \text{Sap}(\mathcal{L}) \subseteq P$. Now B acts completely reducibly on $[B, I]$, and hence so does $B \cap P$. It follows that $B \cap P$ acts completely reducibly on $[B \cap P, I]$. Moreover, $Z(P) = Z(\mathcal{L}) \oplus Z_{[B, I]}(B \cap P)$ and the p-map is trivial on $[B, I]$, so that $Z(P)$ is completely reducible under the p-map. The result now follows from Theorem 2.4.

Corollary 2.8. Let \mathcal{L} be a finite dimensional Lie p-algebra such that $\mathcal{L}^{(1)}$ is nilpotent and $\mathcal{F}_p(\mathcal{L}) = 0$. If J is an ideal of \mathcal{L}, then $\text{Sap}(J) = 0$.

\[\Box\]
Proof. It suffices to show this for maximal ideals. By Corollary 2.5, we may assume that $I_1 \not\subseteq J$, where $\text{Sap}(\mathcal{L}) = I_1 \oplus \cdots \oplus I_n$, with I_1, \ldots, I_n minimal abelian p-ideals. Then $\mathcal{L} = J + I_1$, since J is maximal, and $J \cap I_1 = 0$. Thus $\mathcal{L} = J \oplus I_1$, $J \cong \mathcal{L}/I_1 \cong B + (I_2 \oplus \cdots \oplus I_n)$, and $I_1 \subseteq Z(\mathcal{L})$. Hence $Z_B(I_2 \oplus \cdots \oplus I_n) = Z_B(I) = 0$, and it is clear that all of the conditions of Theorem 2.4 (ii) hold. □

Corollary 2.9. If \mathcal{L} is an abelian finite dimensional Lie p-algebra, then $\mathcal{F}_p(\mathcal{L}) = 0$, if and only if \mathcal{L} is completely reducible under the p-map.

Proof. This statement can be proved by using Theorem 2.4 and the fact $B = 0$ and $\mathcal{L} = Z(\mathcal{L})$. □

Corollary 2.10. Let \mathcal{L} be a finite dimensional Lie p-algebra such that $\mathcal{L} = \text{Sap}(\mathcal{L}) + B$ and that the conditions of Theorem 2.4 (ii) are satisfied. Assume in addition that B is completely reducible under the p-map; that is $\text{Sap}(B) = B$. Then if P is any p-subalgebra of \mathcal{L}, $P = \text{Sap}(P) \oplus B'$, the conditions of Theorem 2.4. (ii) are satisfied and B' is completely reducible under the p-map.

Proof. If $\text{Sap}(\mathcal{L}) \subseteq P$, then $\text{Sap}(P) = \text{Sap}(\mathcal{L})$, and taking $B' = B \cap P$, we get the result.

It suffices to prove the Corollary for maximal p-subalgebras. So assume that P is maximal and that $I_1 \not\subseteq P$, where $\text{Sap}(\mathcal{L}) = I_1 \oplus \cdots \oplus I_n$, with I_1, \ldots, I_n minimal abelian p-ideals. Then $\mathcal{L} = I_1 + P$, with $P \cap I_1 = 0$. Hence $P \cong B + (I_2 \oplus \cdots \oplus I_n)$. As B is completely reducible under the p-map, we have

$$B = B' \oplus Z_B(I_2 \oplus \cdots \oplus I_n).$$

Then $\text{Sap}(P) = Z_B(I_2 \oplus \cdots \oplus I_n) \oplus I_2 \oplus \cdots \oplus I_n, P = \text{Sap}(P) \oplus B'$, the conditions of Theorem 2.4 (ii) are satisfied and B' is completely reducible under the p-map. □

Definition 2.11. A finite dimensional Lie p-algebra \mathcal{L} is called p-elementary, if $\mathcal{F}_p(P) = 0$ for every p-subalgebra P of \mathcal{L}.

Corollary 2.12. Assume $\mathcal{L}^{(1)}$ is a finite dimensional Lie p-algebra with nilpotent $\mathcal{L}^{(1)}$ and $\mathcal{F}_p(\mathcal{L}) = 0$. Let $\mathcal{L} = \text{Sap}(\mathcal{L}) \dotplus B$ as in Theorem 2.4 (ii). Then \mathcal{L} is p-elementary, if and only if $B = \text{Sap}(B)$.

Proof. As $\mathcal{F}_p(\mathcal{L}) = 0$ and $\mathcal{L} = \text{Sap}(\mathcal{L}) \dotplus B$ (Theorem 2.4. (ii)), then B has a faithful completely reducible representation on $\text{Sap}(\mathcal{L})$. This is equivalent to the fact that B has a non-zero nilideals as in [7]. Since B is abelian, this is equivalent to the injectivity of the p-map. Since \mathbb{K} is algebraically closed, this is equivalent to $\text{Sap}(B) = B$ as in [4]. It follows from Corollary 2.14 that \mathcal{L} is p-elementary. The converse is immediate from the definition. □
The result above cannot be extended to the case when K is a perfect field. Let us see the following example.

Example 3. Let L be any abelian Lie p-algebra for which the p-map is injective but L is not completely reducible under the p-map. Then L has a faithful completely reducible module B. Make B into an abelian Lie p-algebra with trivial p-map. Then $F_p(B + L) = 0$, but $F_p(L) \neq 0$.

Now, if K is not perfect, let $\lambda \in K \setminus K^p$and take $L = Ka + Kb$, with $a^p = a, b^p = \lambda a$. If $\lambda \in K$ and $\mu^p - \mu + \lambda = 0$ has no solution in K, take $L = Ka + Kb$ with $a^p = a, b^p = b + \lambda a$. Here we may take B to be p-dimensional with a represented by the identity matrix and b represented by the matrix

\[
\begin{pmatrix}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
& & & & \\
0 & 0 & 0 & \ldots & 1 \\
-\lambda & 1 & 0 & \ldots & 0
\end{pmatrix}
\]

(the companion matrix of $\mu^p - \mu + \lambda$). If $K = Z_p$ we may take $\lambda = -1$.

Putting $p = 2$, we get the example 2.7.

References

"Mircea cel Batran" Naval Academy, 1, Fulgerului Street, 900218, Constantza, Romania

E-mail address: cciobanu@anmb.ro