THE BEST CONSTANT FOR CARLEMAN’S INEQUALITY
OF FINITE TYPE

YU-DONG WU, ZHI-HUA ZHANG, AND ZHI-GANG WANG

Dedicated to Mr. Bi-Fan Li on the occasion of his 53rd birthday.

Abstract. In this short note, we consider the best constant for Carleman’s inequality of finite type by means of weight coefficient and nonlinear algebraic equation system. The result presented here give a part of answer this problem.

1. Introduction and Main Result

The following Carleman’s inequality (see [3, 9]) is well-known:

\[
\sum_{k=1}^{\infty} \left(a_1 a_2 \cdots a_k \right)^{\frac{1}{k}} < e \sum_{k=1}^{\infty} a_k,
\]

where
\[a_k \geq 0 \quad \text{and} \quad 0 < \sum_{k=1}^{\infty} a_k < \infty. \]

For some recent investigations of Carleman’s inequality, see (for example) the works by Alzer [1, 2], Yang and Debnath [15], Yan and Sun [14], Li [11], Yang [17, 16], Yuan [18], Chen [6], Duncan and McGregor [8], Chen et al. [4], Chen and Qi [5], Yue [19] and Liu and Zhu [12].

The finite type of (1.1) is

\[
\sum_{k=1}^{n} \left(a_1 a_2 \cdots a_k \right)^{\frac{1}{k}} < e \sum_{k=1}^{n} a_k.
\]

2000 Mathematics Subject Classification. Primary 26D15; Secondary 65H10.

Key words and phrases. Carleman’s inequality; Best constant; Nonlinear algebraic equation system; AM-GM inequality; Wu’s method.

The present investigation was supported by the Scientific Research Fund of Hunan Provincial Education Department under Grant 08C118 of People’s Republic of China.
We know that the coefficient e of (1.1) is the best possible. However, in (1.2), the coefficient e is not the best possible one. In 1963, de Bruijn [7] improved on e with asymptotic methods in analysis as follows:

$$C_n = e - \frac{2\pi^2e}{(\ln n)^2} + O\left(\frac{1}{(\ln n)^3}\right) \quad (n \in \mathbb{N} := \{1, 2, 3, \ldots\}).$$

In a recent paper, Johansson et al. [10] improved on e to $e^{1-\frac{1}{n}}$. In this short note, we shall refine $e^{1-\frac{1}{n}}$ in our following main result.

Theorem 1. The best constant C_n for the following inequality:

$$(1.3) \sum_{k=1}^{n} (a_1a_2 \cdots a_k)^{\frac{1}{k}} \leq C_n \sum_{k=1}^{n} a_k \quad (n \in \mathbb{N})$$

is the solution of the nonlinear algebraic equation:

$$\begin{cases}
1 + \frac{x_2}{2} + \frac{x_3}{3} + \cdots + \frac{x_{n-1}}{n-1} + \frac{x_n}{n} = C_n, \\
\frac{x_2}{2} + \frac{x_3}{3} + \cdots + \frac{x_{n-1}}{n-1} + \frac{x_n}{n} = C_n x_2^2, \\
\vdots \\
x_{n-1} + \frac{x_n}{n} = C_n \cdot \frac{x_{n-1}}{x_{n-2}}, \\
x_n = C_n \cdot \frac{x_n}{x_{n-1}},
\end{cases}$$

or the ratiocinate equation system:

$$\begin{cases}
y_0 = C_n, \\
y_{n-1} = \frac{1}{n}, \\
y_{i-1} - \left(\frac{y_i}{C_n}\right)^\frac{1}{i} y_i = \frac{1}{i},
\end{cases}$$

where $1 \leq i \leq n - 1$.

2. Proof of Theorem 1

By applying AM–GM inequality, we can easily obtain

$$\sum_{k=1}^{n} (a_1a_2 \cdots a_k)^{\frac{1}{k}} = \sum_{k=1}^{n} \left(\frac{\lambda_1 a_1(\lambda_2 a_2) \cdots (\lambda_k a_k)}{\lambda_1 \lambda_2 \cdots \lambda_k}\right)^{\frac{1}{k}} \leq \sum_{k=1}^{n} \frac{1}{(\lambda_1 \lambda_2 \cdots \lambda_k)^{\frac{1}{k}}} \left(\frac{1}{k} \sum_{j=1}^{k} \lambda_j a_j\right)$$

$$= \sum_{i=1}^{n} \left(\sum_{k=1}^{n} \frac{\lambda_i}{k(\lambda_1 \lambda_2 \cdots \lambda_k)^{\frac{1}{k}}} a_i\right) = C_n \sum_{k=1}^{n} a_k.$$
It follows from the last two expressions of (2.1) that

\[
\begin{align*}
1 + \frac{\lambda_1}{2(\lambda_1 \lambda_2)^{\frac{1}{2}}} + \frac{\lambda_1}{3(\lambda_1 \lambda_2 \lambda_3)^{\frac{1}{3}}} + \cdots + \frac{\lambda_1}{(n-1)(\lambda_1 \lambda_2 \cdots \lambda_{n-1})^{\frac{1}{n-1}}} + \frac{\lambda_1}{n(\lambda_1 \lambda_2 \cdots \lambda_n)^{\frac{1}{n}}} &= C_n, \\
\frac{\lambda_2}{2(\lambda_1 \lambda_2)^{\frac{1}{2}}} + \frac{\lambda_2}{3(\lambda_1 \lambda_2 \lambda_3)^{\frac{1}{3}}} + \cdots + \frac{\lambda_2}{(n-1)(\lambda_1 \lambda_2 \cdots \lambda_{n-1})^{\frac{1}{n-1}}} + \frac{\lambda_2}{n(\lambda_1 \lambda_2 \cdots \lambda_n)^{\frac{1}{n}}} &= C_n, \\
&\vdots \\
\frac{\lambda_{n-1}}{(n-1)(\lambda_1 \lambda_2 \cdots \lambda_{n-1})^{\frac{1}{n-1}}} + \frac{\lambda_{n-1}}{n(\lambda_1 \lambda_2 \cdots \lambda_n)^{\frac{1}{n}}} &= C_n, \\
\frac{\lambda_n}{n(\lambda_1 \lambda_2 \cdots \lambda_n)^{\frac{1}{n}}} &= C_n.
\end{align*}
\]

(2.2)

Now, we set

\[
\begin{align*}
\frac{1}{\lambda_1} &= x_1, \\
\frac{1}{(\lambda_1 \lambda_2)^{\frac{1}{2}}} &= x_2, \\
&\cdots, \\
\frac{1}{(\lambda_1 \lambda_2 \cdots \lambda_n)^{\frac{1}{n}}} &= x_n,
\end{align*}
\]

then

\[
\begin{align*}
\frac{1}{\lambda_1} &= x_1, \\
\frac{1}{\lambda_2} &= \frac{x_2}{x_1}, \\
&\cdots, \\
\frac{1}{\lambda_n} &= \frac{x_n}{x_{n-1}}.
\end{align*}
\]

We also know that (2.2) can be rewritten as the following nonlinear algebraic equation system:

\[
\begin{align*}
x_1 + \frac{x_2}{2} + \frac{x_3}{3} + \cdots + \frac{x_{n-1}}{n-1} + \frac{x_n}{n} &= C_n x_1, \\
\frac{x_2}{2} + \frac{x_3}{3} + \cdots + \frac{x_{n-1}}{n-1} + \frac{x_n}{n} &= C_n \cdot \frac{x_2}{x_1}, \\
&\vdots \\
\frac{x_{n-1}}{n-1} + \frac{x_n}{n} &= C_n \cdot \frac{x_{n-1}}{x_{n-2}}, \\
\frac{x_n}{n} &= C_n \cdot \frac{x_n}{x_{n-1}}.
\end{align*}
\]

(2.3)

Since the nonlinear algebraic equation system (2.3) is homogeneous for \(x_i \) (1 \(\leq \) \(i \) \(\leq \) \(n \)), we can set \(x_1 = 1 \), hence, (2.3) reduces to (1.4).

If we set

\[
y_{i-1} = C_n \left(\frac{x_i}{x_{i-1}} \right)^{i-1} \quad \text{and} \quad y_0 = C_n,
\]

we know that the nonlinear algebraic equation system (2.3) can be written as (1.5).

3. Remarks and Observations

Remark 2. When \(n = 2 \), the nonlinear algebraic equation system (1.4) reduces to

\[
\begin{align*}
1 + \frac{x_2}{2} &= C_2, \\
\frac{x_2}{2} &= C_2 x_2^2.
\end{align*}
\]
It’s easy to get

\[C_2 = \frac{\sqrt{2} + 1}{2}. \]

Remark 3. When \(n = 3 \), the nonlinear algebraic equation system (1.4) becomes

\[
\begin{align*}
1 + \frac{x_2}{2} + \frac{x_3}{3} &= C_3, \\
\frac{x_2}{2} + \frac{x_3}{3} &= C_3 x_2^2, \\
\frac{x_3}{3} &= C_3 x_2^3 x_2.
\end{align*}
\]

For \(x_2 > 0 \) and \(x_3 > 0 \), we know that (3.1) can be written as follows:

\[
\begin{align*}
1 + \frac{x_2}{2} + \frac{x_3}{3} - C_3 &= 0, \\
\frac{x_2}{2} + \frac{x_3}{3} - C_3 x_2^2 &= 0, \\
\frac{x_3}{3} - C_3 x_2^3 &= 0.
\end{align*}
\]

By applying Wu’s method (see [13]), we find that the solutions of (3.2) are the union of the solutions of the following nonlinear algebraic equation systems:

\[
\begin{align*}
x_2 &= 0, \\
x_3 &= 0, \\
C_3 - 1 &= 0, \\
2x_2 - 1 &= 0, \\
4x_3 - 1 &= 0, \\
3C_3 - 4 &= 0.
\end{align*}
\]

and

\[
\begin{align*}
108C_3^3 - 108C_3^2 - 108C_3^2 x_2 + 27C_3 - 4 &= 0, \\
108C_3^3 - 108C_3^2 - 72C_3 x_3 - 27C_3 + 4 &= 0, \\
3888C_3^5 - 2592C_3^4 - 1512C_3^3 - 360C_3^2 + 51C_3 - 4 &= 0.
\end{align*}
\]

It’s not difficult to find that only the following equation system satisfies our restricted conditions on \(x_k \) (\(k = 2, 3 \)) and \(C_3 \),

\[
\begin{align*}
2x_2 - 1 &= 0, \\
4x_3 - 1 &= 0, \\
3C_3 - 4 &= 0.
\end{align*}
\]

Thus, we get

\[C_3 = \frac{4}{3}. \]

Remark 4. When \(n = 4 \), the nonlinear algebraic equation system (1.4) can be written as follows:

\[
\begin{align*}
1 + \frac{x_2}{2} + \frac{x_3}{3} + \frac{x_4}{4} &= C_4, \\
\frac{x_2}{2} + \frac{x_3}{3} + \frac{x_4}{4} &= C_4 x_2^2, \\
\frac{x_3}{3} + \frac{x_4}{4} &= C_4 x_2^3 x_2, \\
\frac{x_4}{4} &= C_4 x_2^4 x_3.
\end{align*}
\]
By similarly applying the method of Remark 3 and using (1.5), we know that C_4 in (3.3) is the largest positive root of the following equation:

\[(3.4)\]
\[
109049173118505959030784 C_4^{24} - 654295038711035754184704 C_4^{23} \\
+ 1472163837099830446915584 C_4^{22} - 1387347813563214701002752 C_4^{21} \\
+ 220843507713085418766336 C_4^{20} + 361130725214496730644480 C_4^{19} \\
+ 18738444188050884919296 C_4^{18} - 149735761790067869220864 C_4^{17} \\
- 200330380665961207168 C_4^{16} + 14417509185682352898048 C_4^{15} \\
+ 16905530303693690241024 C_4^{14} - 209841883912516877824 C_4^{13} \\
- 198705178996352483328 C_4^{12} + 427447433656163893248 C_4^{11} \\
+ 41447678188009291776 C_4^{10} - 2629784260986273792 C_4^9 \\
+ 66047552181381120 C_4^8 + 342213608420278272 C_4^7 \\
+ 42624005978423296 C_4^6 - 201976270848000 C_4^5 \\
+ 274965186525696 C_4^4 + 12841816536576 C_4^3 \\
+ 373658292864 C_4^2 + 22039921152 C_4 + 387420489 = 0.
\]

Therefore, we find from (3.4) that

\[C_4 \approx 1.420844385.\]

Remark 5. When $n \geq 5$, we fail to obtain C_n is one of the roots of certain algebraic equation. But in view of (1.5) and the numerical method of equation (with the function `fsolve()` in mathematical software Maple 10), we can get the following approximate results for $5 \leq n \leq 12$:

<table>
<thead>
<tr>
<th>n</th>
<th>C_n</th>
<th>n</th>
<th>C_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1.486353229</td>
<td>9</td>
<td>1.645509523</td>
</tr>
<tr>
<td>6</td>
<td>1.537937557</td>
<td>10</td>
<td>1.671759812</td>
</tr>
<tr>
<td>7</td>
<td>1.580037211</td>
<td>11</td>
<td>1.694891445</td>
</tr>
<tr>
<td>8</td>
<td>1.615322400</td>
<td>12</td>
<td>1.715500223</td>
</tr>
</tbody>
</table>

With the aid of the numerical method of equation, we also can get the approximate results of C_n ($n \geq 13$). Since the computations are too complex, we here choose to omit the details.

Remark 6. Clearly, our results of C_n ($2 \leq n \leq 12$) are improvements of the corresponding results obtained by Johansson et al. [10].

Finally, by virtue of the results obtained by de Bruijn [7], we know that C_n ($n \in \mathbb{N}$) in Theorem 1 are monotonous and bounded for $n \in \mathbb{N}$. Here, we pose the following problem.

Problem 7. What are the best $f(n)$ and $g(n)$ in the following inequality?
\[f(n) \leq C_{n+1} - C_n \leq g(n) \quad (n \in \mathbb{N}), \]

where \(C_n \) and \(C_{n+1} \) are given by Theorem 1.

4. ACKNOWLEDGEMENTS

The authors would like to thank Professor N.G. de Bruijn and Jian Chen for their kindly help in sending several references to them.

REFERENCES

Yu-Dong Wu,
Department of Mathematics,
Xinchang High School,
Xinchang,
Zhejiang 312500,
People’s Republic of China
E-mail address: yudong.wu@yahoo.com.cn

Zhi-Hua Zhang,
Department of Mathematics,
Zixing Educational Research Section,
Chenzhou,
Hunan 423400,
People’s Republic of China
E-mail address: zxzh1234@163.com

Zhi-Gang Wang,
School of Mathematics and Computing Science,
Changsha University of Science and Technology,
Changsha,
Hunan 410076,
People’s Republic of China
E-mail address: zhigwang@163.com