FIXED POINTS THEOREMS FOR \(n \)-VALUED MULTIFUNCTIONS

ABDELKADER STOUTI AND ABDELHAKIM MAADEN

Abstract. We first show that if \(Y \) is a nonempty AR space and \(F: Y \to Y \) is a compact \(n \)-valued multifunction, then \(F \) has at least \(n \) fixed point. We also prove that if \(C \) is a nonempty closed convex subset of a topological vector space \(E \) and \(F: C \to C \) is a continuous \(\Phi \)-condensing \(n \)-valued multifunction, then \(F \) has at least \(n \) fixed points.

1. Introduction and preliminaries

Let \(X \) and \(Y \) be two Hausdorff topological spaces.

A multifunction \(F: X \to Y \) is a map from \(X \) into the set \(2^Y \) of nonempty subsets of \(Y \). The range of \(F \) is \(F(X) = \bigcup_{x \in X} F(x) \).

The multifunction \(F: X \to Y \) is said to be upper semi-continuous (usc) if for each open subset \(V \) of \(Y \) with \(F(x) \subset V \) there exists an open subset \(U \) of \(X \) with \(x \in U \) and \(F(U) \subset V \).

The multifunction \(F: X \to Y \) is called lower semi-continuous (lsc) if for every \(x \in X \) and open subset \(V \) of \(Y \) with \(F(x) \cap V \neq \emptyset \) there exists an open subset \(U \) of \(X \) with \(x \in U \) and \(F(x') \cap V \neq \emptyset \) for all \(x' \in U \).

A multifunction \(F: X \to Y \) is continuous if it is both upper semi-continuous and lower semi-continuous.

A multifunction \(F: X \to Y \) is compact if it is continuous and the closure of its range \(\overline{F(X)} \) is a compact subset of \(Y \).

A point \(x \) of \(X \) is said to be a fixed point of a multifunction \(F: X \to X \) if \(x \in F(x) \). We denote by \(\text{Fix}(F) \) the set of all fixed points of \(F \).

A multifunction \(F: X \to Y \) is said to be \(n \)-valued if for all \(x \in X \), the subset \(F(x) \) of \(Y \) consists of \(n \) points.

2000 Mathematics Subject Classification. 46A55, 52A07, 54H25.

Key words and phrases. AR spaces, \(n \)-valued multifunction, convex set, fixed point, \(\Phi \)-condensing multifunction.
A multifunction $F: X \to X$ is said to be an n-function if there exist n continuous maps $f_i: X \to X$, where $i = 1, \ldots, n$, such that $F(x) = \{f_1(x), \ldots, f_n(x)\}$ and $f_i(x) \neq f_j(x)$ for all $x \in X$ and $i, j = 1, \ldots, n$ with $i \neq j$.

In this work, we shall use the following result due to H. Schirmer [11].

Lemma 1.1. [11]. Let X and Y be two compact Hausdorff topological spaces. If X is path and simply connected and $F: X \to Y$ is a continuous n-valued multifunction, then F is an n-function.

In [1], Borsuk first introduced the notion of AR spaces (for the general theory see [1, 2]).

Definition 1.2. [1, 2]. A space Y is called an absolute retract space whenever

(i) Y is metrizable and
(ii) for any metrizable space X and closed subset A of X each continuous map $f: A \to Y$ is extendable over X. The class of absolute retracts is denoted by AR.

By Dugundji’s extension Theorem [4], we know that every nonempty convex subset of a Banach space is an AR space. In [1], it is shown that every union of two AR spaces, which their intersection is an AR space is also an AR space. Recently, in [9], Park established the following result.

Theorem 1.3. [9]. Every nonempty compact convex subset of a metrizable topological vector space is an AR space.

In infinite dimension topology the Hilbert cube I^∞ is an important tool. It is defined by

$$I^\infty = \left\{ (x_1, x_2, x_3, \ldots) : x_i \in \mathbb{R} \text{ and for all } i \in \mathbb{N}^*, |x_i| \leq \frac{1}{i} \right\}.$$

In [1], Borsuk proved the following result.

Theorem 1.4. [1]. Let K be a nonempty compact metric space. Then, there is a closed subset K_1 of the Hilbert cube I^∞ and a homeomorphic map $h: K \to K_1$.

In [11], Schirmer studied the fix-finite approximation property for n-valued multifunction defined on finite polyhedron. Later on, in [12, 13], the first author established some results concerning the fix-finite approximation property for n-valued multifunction defined in normed spaces and metrizable locally convex spaces. In the present work we are interesting to study the existence of fixed point of continuous n-valued multifunctions.

In [5, Theorem 10.8, p.94], one can find the proof of the generalized Schauder fixed point theorem.

Theorem 1.5. [5]. Let Y be a nonempty AR space. Then, every compact map $f: Y \to Y$ has a fixed point.
In this note, we first prove that if Y is an absolute retract and $F: Y \to Y$ is a compact n-valued multifunction, then F has at least n fixed points (see Theorem 2.1). That is a generalization of the generalized Schauder fixed point theorem [5]. By using the properties of AR spaces [1, 2], we shall show that if C_i, for $i = 1, \ldots, m$, is a finite family of nonempty convex compact subsets of a metrizable topological vector space such that $\cap_{i=1}^{m} C_i \neq \emptyset$, then every continuous n-valued multifunction $F: \bigcup_{i=1}^{m} C_i \to \bigcup_{i=1}^{m} C_i$ has at least n fixed points (see Theorem 2.2).

The notion of measure of noncompactness was first introduced by Kuratowski in [6]. In Banach spaces he defined the set-measure of noncompactness, α, as follows:

$$\alpha(A) = +\infty, \text{ if } A \text{ is unbounded. and if } A \text{ is bounded, then}$$

$$\alpha(A) = \inf\{d > 0 : A \text{ can be covered with finite number of sets of diameter less than } d\}.$$

Analogously, Gokhberg, Goldenstein and Markus (see Lloyd [7], Ch. 6) introduced the ball measure of noncompactness β. The notion of measure of noncompactness in the following definition is a generalization of the measure of noncompactness α and β defined in terms of a family of seminorms or a norm.

Definition 1.6. Let E be a topological vector space and L be a lattice with a least element, which is denoted by 0. A function $\Phi: E \to L$ is called a measure of noncompactness on E provided that the following conditions hold for any $X, Y \in 2^E$:

1. $\Phi(X) = 0$ if and only if \overline{X} is compact,
2. $\Phi(\overline{co}X) = \Phi(X)$, where \overline{co} denotes the convex closure of X,
3. $\Phi(X \cup Y) = \max\{\Phi(X), \Phi(Y)\}$.

Definition 1.7. For $X \subset E$, a multifunction $F: X \to E$ is said to be Φ-condensing provided that if $A \subset X$ and $\Phi(A) \leq \Phi(F(A))$, then A is relatively compact; that is, $\Phi(A) = 0$.

Note that every multifunction defined on a compact set is Φ-condensing.

In 2001, Cauty [3] obtained the affirmative solution of the Schauder conjecture as follows:

Theorem 1.8. [3]. Let E be a Hausdorff topological vector space, C a nonempty convex subset of E, and f a continuous map from C into C. If $f(C)$ is contained in a compact subset of C, then f has a fixed point.

By using the last result, we prove that if C is a nonempty closed convex subset of a Hausdorff topological vector space E and $F: C \to C$ is a continuous Φ-condensing n-valued multifunction, then F has at least n fixed points (see Theorem 2.5).
2. The Results

In this section, we shall establish some fixed point results for \(n \)-valued multifunctions. First, we shall show the following.

Theorem 2.1. Let \(Y \) be a nonempty AR space. Then, every compact \(n \)-valued multifunction \(F : Y \to Y \) has at least \(n \) fixed points.

Proof. Let \(Y \) be a nonempty AR space and \(F : Y \to Y \) be a compact \(n \)-valued multifunction. Let \(K = F(Y) \). Since \(K \) is a compact metric space, then by Theorem 1.4, there exists a closed subset \(K_1 \) of \(I^\infty \) and a homeomorphism \(h : K \to K_1 \). Let \(i : K \to Y \) and \(j : K_1 \to I^\infty \) be the inclusion maps. Then, the map \(i \circ h^{-1} : K_1 \to Y \) is continuous. From this and as \(K_1 \) is a closed subset of \(I^\infty \) and \(Y \) is an AR space, then there exists a continuous map \(g : I^\infty \to Y \) which extends the map \(i \circ h^{-1} \). Now, set \(G = j \circ h \circ F : Y \to I^\infty \).

Claim 1. The multifunction \(G : Y \to I^\infty \) is a \(n \)-valued continuous multifunction. Indeed, if \(x \in Y \), then \(F(x) = \{y_1, \ldots, y_n\} \) and \(y_i \neq y_j \) for all \(i, j = 1, \ldots, n \) with \(i \neq j \). So, we have

\[
G(x) = j(h(\{y_1, \ldots, y_n\})) = j(\{h(y_1), \ldots, h(y_n)\}) = \{h(y_1), \ldots, h(y_n)\}.
\]

As \(h \) is a homeomorphism, hence for every \(x \in Y \) the set \(G(x) \) has exactly \(n \) elements. Thus, \(G \) is an \(n \)-valued continuous multifunction and our claim is proved.

Claim 2. We have: \(F = g \circ G \). Indeed, if \(x \in Y \), then \(F(x) = \{y_1, \ldots, y_n\} \) and \(y_i \neq y_j \) for all \(i, j = 1, \ldots, n \) with \(i \neq j \). Then, we obtain,

\[
g(G(x)) = g(\{h(y_1), \ldots, h(y_n)\}) = \{g(h(y_1)), \ldots, g(h(y_n))\}.
\]

On the other hand, we know that for every \(i \in \{1, \ldots, n\} \), we have \(h(y_i) \in K_1 \). From this and as \(g/K_1 = i \circ h^{-1} \), then for every \(i \in \{1, \ldots, n\} \), we get

\[
g(h(y_i)) = i \circ h^{-1}(h(y_i)) = y_i.
\]

Therefore, \(F = g \circ G \) and our claim is proved.

Claim 3. The multifunction \(H = G \circ g : I^\infty \to I^\infty \) has at least \(n \) fixed point. Indeed, since \(G \) is an \(n \)-valued multifunction, then \(H \) is an \(n \)-valued multifunction. On the other hand \(G \) and \(g \) are continuous, so \(H \) is continuous. Since \(I^\infty \) is compact convex set, then by Lemma 1.1 \(H \) is an \(n \)-function. Hence, there exist \(n \) continuous maps \(h_i : I^\infty \to I^\infty \), where \(i = 1, \ldots, n \), such that \(H(x) = \{h_1(x), \ldots, h_n(x)\} \) and \(h_i(x) \neq h_j(x) \) for all \(x \in I^\infty \) and \(i, j = 1, \ldots, n \) with \(i \neq j \). By using the Schauder fixed point theorem [5], we deduce that we have \(Fix(h_i) \neq \emptyset \), for every \(i \in \{1, \ldots, n\} \). From this and as \(Fix(h_i) \cap Fix(h_j) = \emptyset \) for \(i, j = 1, \ldots, n \) and \(i \neq j \), we deduce that \(Fix(H) = \cup_{i=1}^n Fix(h_i) \), then \(H \) has at least \(n \) fixed points.

Claim 4. The multifunction \(F \) has at least \(n \) fixed point. Indeed, if \(x \) is a fixed point of \(H \), then \(g(x) \in (g \circ G)(g(x)) \). On the other hand, by Claim 2, we know that we have \(F = g \circ G \). Then,

\[
x \in Fix(H) \Rightarrow x \in H(x) \Rightarrow g(x) \in F(g(x)) \Rightarrow g(x) \in Fix(F).
\]
Thus, we have

\[g(Fix(H)) \subseteq Fix(F). \]

Now, let \(x_i, x_j \in Fix(H) \) with \(i, j = 1, \ldots, n, i \neq j \) and \(x_i \neq x_j \). Let \(F(g(x_i)) = \{ z_i^1, \ldots, z_i^n \} \) and \(F(g(x_j)) = \{ z_j^1, \ldots, z_j^n \} \). As \(H = G \circ g \) and \(G = j \circ h \circ F \), then we have

\[H(x_i) = \{ h(z_i^1), \ldots, h(z_n^n) \} \text{ and } H(x_j) = \{ h(z_j^1), \ldots, h(z_j^n) \}. \]

Since, \(x_i, x_j \in Fix(H) \), so there is \(k, l \in \{1, \ldots, n\} \) such that

\[x_i = h(z_k^1) \text{ and } x_j = h(z_l^1). \]

From this and as \(h(z_k^1), h(z_l^1) \in K_i \) and \(g/\kappa_i = i \circ h^{-1} \), then we get

\[g(x_i) = g(h(z_k^1)) = z_k^i = h^{-1}(x_i) \text{ and } g(x_j) = g(h(z_l^1)) = z_l^j = h^{-1}(x_j). \]

As \(x_i \neq x_j \) and \(h \) is a homeomorphism, hence we get \(g(x_i) \neq g(x_j) \) for \(i, j = 1, \ldots, n \) and \(i \neq j \). By Claim 3, we know that the set \(Fix(H) \) has at least \(n \) elements, so \(g(Fix(H)) \) has also at least \(n \) elements. On the other hand, we know that \(g(Fix(H)) \subseteq Fix(F) \). Therefore, \(F \) has at least \(n \) fixed points. \(\square \)

For finite unions of closed convex subsets of a metrizable topological vector space, we obtain the following result.

Theorem 2.2. Let \(C_i \), for \(i = 1, \ldots, m \), be a finite family of nonempty compact convex subsets of a metrizable topological vector space such that \(\bigcap_{i=1}^{m} C_i \neq \emptyset \). Then, every continuous \(n \)-valued multifunction \(F: \bigcup_{i=1}^{m} C_i \to \bigcup_{i=1}^{m} C_i \) has at least \(n \) fixed points.

Proof. Let \(C = \bigcup_{i=1}^{m} C_i \) and let \(F: C \to C \) be a continuous \(n \)-valued multifunction. By Theorem 1.3, we know that every nonempty convex subset of a metrizable topological vector space is an AR space. In addition, it is shown in [2] that every union of two AR, which their intersection is an AR is also an AR. From this it follows that \(C \) is an AR space. By using Theorem 2.1, we deduce that \(F \) has at least \(n \) fixed points in \(C \). \(\square \)

Remark 2.3. In Theorem 2.2, the condition \(\bigcap_{i=1}^{m} C_i \neq \emptyset \) is essential. Because if it is not the case, then there exists at least a continuous \(n \)-valued multifunction \(F: \bigcup_{i=1}^{m} C_i \to \bigcup_{i=1}^{m} C_i \) which is fixed free. Indeed, let \(C_1 = \overline{B((0,1), \frac{1}{2})} \) and \(C_2 = \overline{B((0,-1), \frac{1}{2})} \) be two compact convex in the Banach space \(\mathbb{R}^2 \) and let \(f: C_1 \cup C_2 \to C_1 \cup C_2 \) the continuous map defined by \(f(x) = -x \). If \(f(x) = x \), then \(x = 0 \). That is not possible. Therefore the map \(f \) is fixed point free.

Next, we shall show the following result.

Theorem 2.4. Let \(C \) be a nonempty closed convex subset of a Hausdorff topological vector space and \(F: C \to C \) a continuous \(\Phi \)-condensing \(n \)-multifunction. Then, \(F \) has at least \(n \) fixed points.

To prove Theorem 2.4, we recall the following result.
Lemma 2.5. [8]. Let C be a nonempty closed convex subset of a topological vector space E, and $F: C \to C$ be a Φ-condensing multifunction. Then, there exists a nonempty compact convex subset K of C such that $F(K) \subset K$.

Combining Theorems 1.3 and 1.8 and Lemma 2.5, we obtain the proof of Theorem 2.4.

Proof of Theorem 2.4. Let C be a nonempty closed convex subset of a Hausdorff topological vector space and $F: C \to C$ be a continuous Φ-condensing n-multifunction. By Lemma 2.5, there exists a nonempty compact convex subset K of C such that $F(K) \subset K$. From this and by using Lemma 1.1 and Theorems 1.3 and 1.8, we conclude that F has at least n fixed points. \qed

As a consequence of Theorem 2.4, we obtain the following result.

Corollary 2.6. Let C be a nonempty closed convex subset of a Hausdorff topological vector space and $F: C \to C$ be a compact n-valued multifunction. Then, F has at least n fixed points.

References

Received 27 November, 2005.
Abelkader Stouti, Laboratoire de Mathématiques et Applications, UFR : Méthodes Mathématiques et Applications, Faculty of Sciences and Techniques, University Sultan Moulay Soulayman, P.O. Box 523. Beni-Mellal 23000, Morocco

E-mail address: stouti@yahoo.com

Abdelhakim Maaden, Laboratoire de Mathématiques et Applications, UFR : Méthodes Mathématiques et Applications, Faculty of Sciences and Techniques, University Sultan Moulay Soulayman, P.O. Box 523. Beni-Mellal 23000, Morocco

E-mail address: a.maaden@fstbm.ac.ma