ON \(\pi \)-IMAGES OF METRIC SPACES

YING GE

Abstract. In this paper, we prove that sequence-covering, \(\pi \)-images of metric spaces and spaces with a \(\sigma \)-strong network consisting of \(fcs \)-covers are equivalent. We also investigate \(\pi \)-images of separable metric spaces.

1. Introduction

A study of images of metric spaces is an important question in general topology ([2, 7, 9, 10, 16]). In recent years, \(\pi \)-images of metric spaces cause attention once again ([4, 13, 18, 19]). It is known that a space is a strong-sequence-covering (resp. sequentially-quotient), \(\pi \)-image of a metric space if and only if it has a \(\sigma \)-strong network consisting of \(cs \)-covers (resp. \(cs^* \)-covers) (see [13], for example). Note that strong-sequence-covering mapping \(\Rightarrow \) sequence-covering mapping \(\Rightarrow \) (if the domain is metric) sequentially-quotient mapping and that \(cs \)-cover \(\Rightarrow \) \(fcs \)-cover \(\Rightarrow \) \(cs^* \)-cover. It is natural to raise the following question.

Question 1.1. Can sequence-covering, \(\pi \)-images of metric spaces be characterized as spaces with a \(\sigma \)-strong network consisting of \(fcs \)-covers?

On the other hand, whether sequentially-quotient, \(\pi \)-images of metric spaces and sequence-covering, \(\pi \)-images of metric spaces are equivalent? This question is still open (see [13, Question 3.1.14] or [19, Question 4.4(2)], for example). This leads us to consider the following question.

Question 1.2. Are sequentially-quotient, \(\pi \)-images of separable metric spaces and sequence-covering, \(\pi \)-images of separable metric spaces equivalent?

In this paper, we give a positive answer for Question 1.1. We also investigate \(\pi \)-images of separable metric spaces, and answer Question 1.2 affirmatively.

2000 Mathematics Subject Classification. 54E35, 54E40.
Key words and phrases. Metric space, \(\pi \)-mapping, sequence-covering mapping, \(\sigma \)-strong network, \(fcs \)-cover, \(cs^* \)-cover.
This project was supported by NSFC(No.10571151).
Throughout this paper, all spaces are assumed to be Hausdorff, and all mappings are continuous and onto. \(\mathbb{N} \) denotes the set of all natural numbers, \(\{x_n\} \) denotes a sequence, where the \(n \)-th term is \(x_n \). Let \(X \) be a space and let \(A \) be a subset of \(X \). We say that a sequence \(\{x_n\} \) converging to \(x \) in \(X \) is eventually in \(A \) if \(\{x_n : n > k\} \cup \{x\} \subset A \) for some \(k \in \mathbb{N} \). Let \(\mathcal{P} \) be a family of subsets of \(X \) and let \(x \in X \). \(\bigcup \mathcal{P} \), \(st(x, \mathcal{P}) \) and \((\mathcal{P})_x \) denote the union \(\bigcup \{P : P \in \mathcal{P}\} \), the union \(\bigcup \{P \in \mathcal{P} : x \in P\} \) and the subfamily \(\{P \in \mathcal{P} : x \in P\} \) of \(\mathcal{P} \) respectively. For a sequence \(\{\mathcal{P}_n : n \in \mathbb{N}\} \) of covers of a space \(X \), we abbreviate \(\{\mathcal{P}_n : n \in \mathbb{N}\} \) to \(\mathcal{P}_n \). A point \(b = (\beta_n)_{n \in \mathbb{N}} \) of a Tychonoff-product space is abbreviated to \((\beta_n) \), where \(\beta_n \) is the \(n \)-th coordinate of \(b \). If \(f : X \rightarrow Y \) is a mapping, then \(f(\mathcal{P}) \) denotes \(\{f(P) : P \in \mathcal{P}\} \).

2. \(\pi \)-Images of Metric Spaces

Definition 2.1. Let \(f : X \rightarrow Y \) be a mapping.

1. \(f \) is called a strong-sequence-covering mapping ([11]) if for every convergent sequence \(S \) in \(Y \), there exists a convergent sequence \(L \) in \(X \) such that \(f(L) = S \).

2. \(f \) is called a sequence-covering mapping ([6]) if for every sequence \(S \) converging to \(y \) in \(Y \), there exists a compact subset \(K \) of \(X \) such that \(f(K) = S \cup \{y\} \).

3. \(f \) is called a sequentially-quotient mapping ([1]) if for every convergent sequence \(S \) in \(Y \), there exists a convergent sequence \(L \) in \(X \) such that \(f(L) \) is a subsequence of \(S \).

4. \(f \) is called a compact-covering mapping([15]) if for every compact subset \(C \) of \(Y \), there exists a compact subset \(K \) of \(X \) such that \(f(K) = C \).

5. \(f \) is called a \(\pi \)-mapping ([16]), if for every \(y \in Y \) and for every neighborhood \(U \) of \(y \) in \(Y \), \(d(f^{-1}(y), X - f^{-1}(U)) > 0 \), where \(X \) is a metric space with a metric \(d \).

Definition 2.2. Let \(\mathcal{P} \) be a cover of a space \(X \).

1. \(\mathcal{P} \) is called an \(fcs \)-cover of \(X \) ([5]) if for every sequence \(S \) converging to \(x \) in \(X \), there exists a finite subfamily \(\mathcal{P}' \) of \(\mathcal{P} \) such that \(S \) is eventually in \(\bigcup \mathcal{P}' \).

2. \(\mathcal{P} \) is called a \(cs^* \)-cover ([13]) if for every convergent sequence \(S \) in \(X \), there exist \(P \in \mathcal{P} \) and a subsequence \(S' \) of \(S \) such that \(S' \) is eventually in \(P \).

Definition 2.3. (1) Let \(\mathcal{P} = \bigcup \{\mathcal{P}_x : x \in X\} \) be a cover of a space \(X \), where \(\mathcal{P}_x \subset (\mathcal{P})_x \). \(\mathcal{P} \) is called a network of \(X \) ([15]), if for every \(x \in U \) with \(U \) open in \(X \), there exists \(P \in \mathcal{P}_x \) such that \(x \in P \subset U \), where \(\mathcal{P}_x \) is called a network at \(x \) in \(X \).

2. Let \(\{\mathcal{P}_n\} \) be a sequence of covers of a space \(X \) and every \(\mathcal{P}_{n+1} \) is an refinement of \(\mathcal{P}_n \). \(\mathcal{P} = \bigcup \{\mathcal{P}_n : n \in \mathbb{N}\} \) is called a \(\sigma \)-strong network ([8]), if \(\{st(x, \mathcal{P}_n)\} \) is a network at \(x \) in \(X \) for every \(x \in X \).
(3) A σ-strong network $\mathcal{P} = \bigcup\{P_n : n \in \mathbb{N}\}$ is called a σ-strong network consisting of (countable) fcs-covers (resp. cs*-covers) if \mathcal{P}_n is a (countable)
fcs-cover (resp. cs*-cover) for every $n \in \mathbb{N}$.

(4) A σ-strong network $\mathcal{P} = \bigcup\{P_n : n \in \mathbb{N}\}$ is called a σ-point-countable strong network if \mathcal{P}_n is point-countable for every $n \in \mathbb{N}$.

Theorem 2.4. For a space X, the following are equivalent.

1. X is a sequence-covering, π-image of a metric space.
2. X has a σ-strong network consisting of fcs-covers.

Proof. (1)\implies(2): Let M be a metric space with a metric d, and let $f : M \to X$ be a sequence-covering, π-mapping. We write $B(a, \varepsilon) = \{b \in M : d(a, b) < \varepsilon\}$ for every $a \in M$, where $\varepsilon > 0$. For every $n \in \mathbb{N}$, put $B_n = \{B(a, 1/n) : a \in M\}$, and put $P_n = f(B_n)$, then P_n is a cover of X.

Claim 1. $\mathcal{P} = \bigcup\{P_n : n \in \mathbb{N}\}$ is a σ-strong network of X.

It is clear that \mathcal{P}_{n+1} is a refinement of \mathcal{P}_n for every $n \in \mathbb{N}$. We only need to prove that $\{st(x, P_n)\}$ is a network at x in X for every $x \in X$. Let $x \in U$ with U open in X. Since f is a π-mapping, there exists $n \in \mathbb{N}$ such that $d(f^{-1}(x), M - f^{-1}(U)) > 1/n$. Pick $m \in N$ such that $m > 2n$. It suffices to prove that $st(x, P_m) \subset U$. Let $a \in M$ and let $x \in f(B(a, 1/m)) \in P_m$.

We claim that $B(a, 1/m) \subset f^{-1}(U)$. If $B(a, 1/m) \not\subset f^{-1}(U)$, then $d(f^{-1}(x), M - f^{-1}(U)) = 0$, pick $c \in f^{-1}(x) \cap B(a, 1/m) \neq \emptyset$, then $d(f^{-1}(x), M - f^{-1}(U)) = d(c, b) - d(c, a) + d(a, b) < 2/m < 1/n$. This is a contradiction. So $B(a, 1/m) \subset f^{-1}(U)$, thus $f(B(a, 1/m)) \subset f^{-1}(U) = U$. This proves that $st(x, P_m) \subset U$.

Claim 2. \mathcal{P}_n is an fcs-cover of X for every $n \in \mathbb{N}$.

Let $n \in \mathbb{N}$. Suppose S is a sequence converging to x in X. Since f is sequence-covering, there exists a compact subset K in M such that $f(K) = S \cup \{x\}$. Note that $f^{-1}(x) \cap K$ is compact in M. There exists a finite subset M of M such that $f^{-1}(x) \cap K \subset \bigcup_{a \in M} B(a, 1/n)$. We can assume that $f^{-1}(x) \cap B(a, 1/n) \neq \emptyset$ for every $a \in M$.

Put $B = \{B(a, 1/n) : a \in M\}$ and $B = \bigcup B$, then $K - B$ is compact in M. Put $\mathcal{P} = \{f(B(a, 1/n)) : a \in M\}$. Then \mathcal{P} is a finite subfamily of (\mathcal{P}_n)x. We prove that S is eventually in $\bigcup \mathcal{P}$ as follows. If not, there exists a subsequence $\{x_k\}$ of S converging to x such that $x_k \not\in \bigcup \mathcal{P}'$ for every $k \in \mathbb{N}$. Thus there exists $a_k \in K - B$ such that $f(a_k) = x_k$ for every $k \in \mathbb{N}$. Since $K - B$ is compact in M, there exists a subsequence $\{a_{k_n}\}$ of $\{a_k\}$ such that the sequence $\{a_{k_n}\}$ converges to a point $a \in K - B$. Thus $f(a) \neq x$. This contradicts the continuity of f. So S is eventually in $\bigcup \mathcal{P}'$. This proves that \mathcal{P}_n is an fcs-cover of X.

By the above, X has a σ-strong network $\mathcal{P} = \bigcup\{P_n : n \in \mathbb{N}\}$ consisting of fcs-covers.

(2)\implies(1): Let X have a σ-strong network $\mathcal{P} = \bigcup\{P_n : n \in \mathbb{N}\}$ consisting of fcs-covers. For every $n \in \mathbb{N}$, put $P_n = \{P_a : a \in \Lambda_n\}$, and Λ_n is endowed
with discrete topology. Put

\[M = \{ a = (\alpha_n) \in \Pi_{n \in \mathbb{N}} \Lambda_n : \{ P_{\alpha_n} \} \text{ is a network at some } x_a \text{ in } X \}. \]

Then \(M \), which is a subspace of the product space \(\Pi_{n \in \mathbb{N}} \Lambda_n \), is a metric space with metric \(d \) described as follows.

Let \(a = (\alpha_n), b = (\beta_n) \in M \). If \(a = b \), then \(d(a, b) = 0 \). If \(a \neq b \), then
\[d(a, b) = 1/\min\{ n \in \mathbb{N} : \alpha_n \neq \beta_n \}. \]

Define \(f : M \rightarrow X \) by choosing \(f(a) = x_a \) for every \(a = (\alpha_n) \in M \), where \(\{ P_{\alpha_n} \} \) is a network at \(x_a \) in \(X \). It is not difficult to check that \(f \) is continuous and onto.

Claim 1. \(f \) is a \(\pi \)-mapping.

Let \(x \in U \) with \(U \) open in \(X \). Since \(\{ P_n \} \) is a \(\sigma \)-strong network of \(X \), there exists \(n \in \mathbb{N} \) such that \(st(x, P_n) \subset U \). Then \(d(f^{-1}(x), M - f^{-1}(U)) \geq 1/2n > 0 \). In fact, if \(a = (\alpha_n) \in M \) such that \(d(f^{-1}(x), a) < 1/2n \), then there is \(b = (\beta_n) \in f^{-1}(x) \) such that \(d(a, b) < 1/n \), so \(\alpha_k = \beta_k \) if \(k \leq n \).

Notice that \(x \in P_{\beta_n} \in P_n, P_{\alpha_n} = P_{\beta_n} \), so \(f(a) \in P_{\alpha_n} = P_{\beta_n} \subset st(x, P_n) \subset U \), hence \(a \in f^{-1}(U) \). Thus \(d(f^{-1}(x), a) \geq 1/2n \) if \(a \in M - f^{-1}(U) \), so \(d(f^{-1}(x), M - f^{-1}(U)) \geq 1/2n > 0 \). This proves that \(f \) is a \(\pi \)-mapping.

Claim 2. \(f \) is a sequence-covering mapping.

Let \(S = \{ x_n \} \) be a sequence converging to \(x \) in \(X \). For every \(n \in \mathbb{N} \), since \(P_n \) is an \(fcs \)-cover, there exists a finite subfamily \(F_n \) of \((P_n)_x \) such that \(S \) is eventually in \(\bigcup F_n \). Note that \(S \cap \bigcup F_n \) is finite. There exists a finite subfamily \(G_n \) of \(P_n \) such that \(S \cap \bigcup F_n \subset \bigcup G_n \). Put \(F_n \cup G_n = \{ P_{\alpha_n} : \alpha_n \in \Gamma_n \} \), where \(\Gamma_n \) is a finite subset of \(\Lambda_n \).

For every \(\alpha_n \in \Gamma_n \), if \(P_{\alpha_n} \in F_n \), then \(S_{\alpha_n} = (S \cup \{ x \}) \cap P_{\alpha_n} \), otherwise, put \(S_{\alpha_n} = (S - \bigcup F_n) \cap P_{\alpha_n} \). It is easy to see that \(S \cup \{ x \} = \bigcup_{\alpha_n \in \Gamma_n} S_{\alpha_n} \) and \(\{ S_{\alpha_n} : \alpha_n \in \Gamma_n \} \) is a family of compact subsets of \(X \). Put \(K = \{ (\alpha_n) \in \Pi_{n \in \mathbb{N}} \Gamma_n : \bigcap_{n \in \mathbb{N}} S_{\alpha_n} \neq \emptyset \} \). Then

(i) \(K \subset M \) and \(f(K) \subset S \cup \{ x \} \): Let \(a = (\alpha_n) \in K \), then \(\bigcap_{n \in \mathbb{N}} S_{\alpha_n} \neq \emptyset \). Pick \(y \in \bigcap_{n \in \mathbb{N}} S_{\alpha_n} \), then \(y \in \bigcap_{n \in \mathbb{N}} P_{\alpha_n} \). Note that \(\{ P_{\alpha_n} : n \in \mathbb{N} \} \) is a network at \(y \) in \(X \) if and only if \(y \in \bigcap_{n \in \mathbb{N}} P_{\alpha_n} \). So \(a \in M \) and \(f(a) = y \in S \cup \{ x \} \).

This proves that \(K \subset M \) and \(f(K) \subset S \cup \{ x \} \).

(ii) \(S \cup \{ x \} \subset f(K) \): Let \(y \in S \cup \{ x \} \). For every \(n \in \mathbb{N} \), pick \(\alpha_n \in \Gamma_n \) such that \(y \in S_{\alpha_n} \). Put \(a = (\alpha_n) \), then \(a \in K \) and \(f(a) = y \). This proves that \(S \cup \{ x \} \subset f(K) \).

(iii) \(K \) is a compact subset of \(M \): Since \(K \subset M \) and \(\Pi_{n \in \mathbb{N}} \Gamma_n \) is a compact subset of \(\Pi_{n \in \mathbb{N}} \Lambda_n \). We only need to prove that \(K \) is a closed subset of \(\Pi_{n \in \mathbb{N}} \Gamma_n \).

It is clear that \(K \subset \Pi_{n \in \mathbb{N}} \Gamma_n \). Let \(a = (\alpha_n) \in \Pi_{n \in \mathbb{N}} \Gamma_n - K \). Then \(\bigcap_{n \in \mathbb{N}} S_{\alpha_n} = \emptyset \). There exists \(n_0 \in \mathbb{N} \) such that \(\bigcap_{n \leq n_0} S_{\alpha_n} = \emptyset \). Put \(W = \{ (\beta_n) \in \Pi_{n \in \mathbb{N}} \Gamma_n : \beta_n = \alpha_n \text{ for } n \leq n_0 \} \). Then \(W \) is open in \(\Pi_{n \in \mathbb{N}} \Gamma_n \) and \(a \in W \). It is easy to see that \(W \cap K = \emptyset \). So \(K \) is a closed subset of \(\Pi_{n \in \mathbb{N}} \Gamma_n \).

By the above (i), (ii) and (iii), \(f \) is a sequence-covering mapping.

By the above, \(X \) is a sequence-covering, \(\pi \)-image of a metric space. \(\square \)
Lemma 2.5. Let P be a point-countable cover of a space X. Then P is an fcs-cover if and only if P is a cs^*-cover.

Proof. Necessity holds by Definition 2.2. We only need to prove sufficiency.

Let P be a point-countable cs^*-cover of X. Let $S = \{x_n\}$ be a sequence converging to x in X. Since P is point-countable, put $(P)_x = \{P_n : n \in \mathbb{N}\}$. Then S is eventually in $\bigcup_{n \leq k} P_n$ for some $k \in \mathbb{N}$. If not, then for any $k \in \mathbb{N}$, S is not eventually in $\bigcup_{n \leq k} P_n$. So, for every $k \in \mathbb{N}$, there exists $x_{n_k} \in S - \bigcup_{n \leq k} P_n$.

We may assume $n_1 < n_2 < \cdots < n_k < n_{k+1} < \cdots$. Put $S' = \{x_{n_k}\}$,

then S' is a sequence converging to x in X. Since P is a cs^*-cover, there exists $m \in \mathbb{N}$ and a subsequence S'' of S' such that S'' is eventually in P_m. This contradicts the construction of S'.

Recall a mapping $f : X \to Y$ is an s-mapping, if $f^{-1}(y)$ is a separable subset of X for every $y \in Y$. Combining [13, Theorem 3.3.12] and [19, Lemma 2.2(2)], we have the following corollary.

Corollary 2.6. Let X be a space. Then the following are equivalent.

(1) X is a sequence-covering, s and π-image of a metric space.
(2) X is a sequentially-quotient, s and π-image of a metric space.
(3) X has a σ-point-countable strong network consisting of fcs-covers.
(4) X has a σ-point-countable strong network consisting of cs^*-covers.

Proof. (1) \implies (2): it is clear.
(2) \implies (4): It holds by [13, Theorem 3.3.12].
(4) \implies (1): It holds by [19, Lemma 2.2(2)].
(3) \iff (4): It holds by Lemma 2.5.

3. π-Images of Separable Metric Spaces

Now we discuss sequence-covering (resp. sequentially-quotient), π-images of separable metric spaces.

Definition 3.1. Let X be a space, and let $x \in X$. A subset P of X is called a sequential neighborhood of x ([3]) if every sequence $\{x_n\}$ converging to x in X is eventually in P.

Definition 3.2. Let $P = \cup \{P_x : x \in X\}$ be a cover of a space X. P is called an sn-network of X ([14]), if P_x satisfies the following (a),(b) and (c) for every $x \in X$, where P_x is called an sn-network at x in X.

(a) P_x is a network at x in X;
(b) if $P_1, P_2 \in P_x$, then $P \subset P_1 \cap P_2$ for some $P \in P_x$;
(c) every element of P_x is a sequential neighborhood of x.

Remark 3.3. In [12], a sequential neighborhood of x and an sn-network is called a sequence barrier at x and a universal cs-network respectively.
Theorem 3.4. For a space X, the following are equivalent.

1. X is a sequence-covering, π-image of a separable metric space;
2. X is a sequentially-quotient, π-image of a separable metric space;
3. X has a σ-strong network consisting of countable fcs-covers;
4. X has a σ-strong network consisting of countable cs*-covers.

Proof. The proofs of $(1) \iff (3)$ and $(2) \iff (4)$ are as the proof of Theorem 2.4. $(3) \iff (4)$ from Lemma 2.5. □

Ge proved that for a regular space X, conditions in Theorem 3.4 are equivalent to that X has a countable sn-network ([4]). The following example shows that "regular" can not be omitted here.

Example 3.5. A space with a countable sn-network is not a sequentially-quotient, π-image of a metric space.

Proof. Let R be the set of all real numbers, and let τ be the Euclidean topology on R. Put $X = R$ with the topology $\tau^* = \{ \{x\} \cup (D \cap U) : x \in U \in \tau \}$, where D is the set of all irrational numbers. That is, X is the pointed irrational extension of R. Then X is Hausdorff, non-regular, and has a countable base ([17, Example 69]), so X has a countable sn-network. Lin showed that X is not a symmetric space ([13, Example 3.13(5)]), so X is not a quotient, π-image of a metric space ([18]). Note that every sequentially-quotient mapping onto a first countable space is quotient ([1]). Thus X is not a sequentially-quotient, π-image of a metric space. □

However, by the proofs of [14, Theorem 4.6 (3) \Rightarrow (2)] and [4, Theorem 2.7(3) \Rightarrow (1)], we have the following results without requiring the regularity of the spaces involved.

Proposition 3.6. For a space X, the following are true.

1. If X is a sequentially-quotient, π-image of a separable metric space, then X has a countable sn-network.
2. If X has a countable closed sn-network, then X is a compact-covering, compact image of a separable metric space.

The author would like to thank the referees for their valuable amendments and suggestions.

REFERENCES

ON π-IMAGES OF METRIC SPACES

Received September 28, 2004.

Department of Mathematics,
Suzhou University,
Suzhou 215006,
P.R.China
E-mail address: geying@pub.sz.jsinfo.net