SOME INEQUALITIES FOR RICCI CURVATURE OF CERTAIN SUBMANIFOLDS IN SASAKIAN SPACE FORMS

DRAGOS CIOROBOIU

Abstract. In the present paper, we obtain sharp inequalities between the Ricci curvature and the squared mean curvature for slant, semi-slant and bi-slant submanifolds in Sasakian space forms. Also, estimates of the scalar curvature and the k-Ricci curvature respectively, in terms of the squared mean curvature, are proved.

1. Preliminaries

A $(2m+1)$-dimensional Riemannian manifold (\tilde{M}, g) is said to be a Sasakian manifold if it admits an endomorphism ϕ of its tangent bundle $T\tilde{M}$, a vector field ξ and a 1-form η, satisfying:

\[\phi^2 = -\text{Id} + \eta \otimes \xi, \eta(\xi) = 1, \phi \xi = 0, \eta \circ \phi = 0, \]
\[g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \eta(X) = g(X, \xi), \]
\[(\tilde{\nabla}_X \phi)Y = -(\phi(X)Y)\xi + \eta(Y)X, \tilde{\nabla}_X \xi = \phi X, \]

for any vector fields X, Y on $T\tilde{M}$, where $\tilde{\nabla}$ denotes the Riemannian connection with respect to g.

A plane section in $T_p\tilde{M}$ is called a ϕ-section if it is spanned by X and ϕX, where X is a unit tangent vector orthogonal to ξ. The sectional curvature of a ϕ-section is called a ϕ-sectional curvature. A Sasakian manifold with constant ϕ-sectional curvature c is said to be a Sasakian space form and is denoted by $\tilde{M}(c)$.

The curvature tensor of $\tilde{M}(c)$ of a Sasakian space form $\tilde{M}(c)$ is given by [1]

\[\tilde{R}(X, Y)Z = \frac{c}{4} \{g(Y, Z)X - g(X, Z)Y\} + \]
\[+ \frac{c-1}{4}(\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X, Z)\eta(Y)\xi - g(Y, Z)\eta(X)\xi + \]
\[+ g(\phi Y, Z)\phi X - g(\phi X, Z)\phi Y - 2g(\phi X, Y)\phi Z \}
\]

for any tangent vector fields X, Y, Z on $\tilde{M}(c)$.

As examples of Sasakian space forms we mention \mathbb{R}^{2m+1} and S^{2m+1}, with standard Sasakian structures (see [1]).

In [9], A. Lotta has introduced the following notion of slant immersion in almost contact metric manifolds.

Definition. We call a differentiable distribution \mathcal{D} on M a slant distribution if for each $x \in M$ and each nonzero vector $X \in \mathcal{D}_x$, the angle $\theta_\phi(X)$ between ϕX and the vector subspace \mathcal{D}_x is constant, which is independent of the choice of $x \in M$.

Key words and phrases. bi-slant submanifold, Ricci curvature, mean curvature, Sasakian space form, semi-slant submanifold, slant submanifold.

233
and $X \in D_x$. In this case, the constant angle θ_D is called the \textit{slant angle} of the distribution D.

Definition. A submanifold M tangent to ξ is said to be \textit{slant} if for any $x \in M$ and any $X \in T_xM$, linearly independent of ξ, the angle between ϕX and T_xM is a constant $\theta \in [0, \frac{\pi}{2}]$, called the \textit{slant angle} of M in \tilde{M}.

Examples of slant submanifolds. (see [2]).

Example 1. For any constant k,
\[
x(u, v, t) = 2(e^{ku}\cos u \cos v, e^{ku}\cos u \sin v, e^{ku}\cos u \sin v, e^{ku}\sin u \sin v, t)
\]
defines a slant submanifold of dimension 3 with slant angle $\theta = \arccos \frac{|k|}{\sqrt{1+k^2}}$, scalar curvature $\tau = \frac{-k^2}{3(1+k^2)}$ and non-constant mean curvature given by $\|H\| = \frac{2e^{-ku}}{3\sqrt{1+k^2}}$. Hence, the submanifold is not minimal.

Example 2. For any constant k,
\[
x(u, v, t) = 2(u, k\cos v, v, k\sin v, t)
\]
defines a slant submanifold M with slant angle $\theta = \arccos \frac{1}{\sqrt{1+k^2}}$, scalar curvature $\tau = \frac{-1}{3(1+k^2)}$, constant mean curvature given by $\|H\| = \frac{|k|}{3(1+k^2)}$. Moreover, the following statements are equivalent:

(a) $k = 0$;
(b) M is invariant;
(c) M is minimal;
(d) M has parallel mean curvature vector.

\textit{Invariant} and \textit{anti-invariant immersions} are slant immersions with slant angle $\theta = 0$ and $\theta = \frac{\pi}{2}$, respectively. A slant immersion which is neither invariant nor anti-invariant is called a \textit{proper slant immersion}.

Definition. We say that a submanifold M tangent to ξ is a \textit{bi-slant} submanifold of \tilde{M} if there exist two orthogonal distributions D_1 and D_2 on M such that:

i) TM admits the orthogonal direct decomposition $TM = D_1 \oplus D_2 \oplus \{\xi\}$.

ii) For any $i = 1, 2$, D_i is slant distribution with slant angle θ_i.

Let $2d_1 = \dim D_1$ and $2d_2 = \dim D_2$.

Remark. If either d_1 or d_2 vanishes, the bi-slant submanifold is a slant submanifold. Thus, slant submanifolds (and, therefore, invariant and anti-invariant submanifolds) are particular cases of bi-slant submanifolds.

Examples of bi-slant submanifolds. (see [2], [3])

Example 1. For any $\theta_1, \theta_2 \in [0, \frac{\pi}{2}]$,
\[
x(u, v, w, s, t) = 2(u, 0, w, 0, v\cos \theta_1, v\sin \theta_1, s\cos \theta_2, s\sin \theta_2, t)
\]
defines a five-dimensional bi-slant submanifold M, with slant angles θ_1 and θ_2, is \mathbb{R}^9 with its usual Sasakian structure (ϕ_0, ξ, η, g).
Furthermore, it is easy to see that
\[
\begin{align*}
 e_1 &= 2\left(\frac{\partial}{\partial x^1} + y^1 \frac{\partial}{\partial z}\right), \\
 e_2 &= \cos \theta_1(2\frac{\partial}{\partial y^1}) + \sin \theta_1(2\frac{\partial}{\partial y^2}), \\
 e_3 &= 2\left(\frac{\partial}{\partial x^3} + y^3 \frac{\partial}{\partial z}\right), \\
 e_4 &= \cos \theta_2(2\frac{\partial}{\partial y^3}) + \sin \theta_2(2\frac{\partial}{\partial y^4}), \\
 e_5 &= 2\frac{\partial}{\partial z} = \xi,
\end{align*}
\]
form a local orthonormal frame of \(TM\). We define the distributions \(D_1 = \langle e_1, e_2 \rangle\) and \(D_2 = \langle e_3, e_4 \rangle\).

Then, it is clear that \(TM = D_1 \oplus D_2 \oplus \langle \xi \rangle\) and it can be easily proved that \(D_i\) is a slant distribution with slant angle \(\theta_i\) for any \(i = 1, 2\). In particular, if we consider \(\theta_1 = \theta_2 = \theta\) in the above, it results that \(M\) is a \(\theta\)-slant submanifold.

Example 2. For any \(\theta_1 \in [0, \frac{\pi}{2}]\), we chose \(\theta_2 \in (0, \frac{\pi}{2}]\), such that \(\cos \theta_2 = \frac{\cos \theta_1}{\sqrt{2}}\).

Then
\[
x(u, v, w, s, t) = 2(u, 0, w, 0, v \cos \theta_1, v \sin \theta_1, s \cos \theta_2, s \sin \theta_2, t)
\]
defines a five-dimensional bi-slant submanifold \(M\) in \((\mathbb{R}^6, \phi_0, \xi, \eta, g)\), with both slant angles equal to \(\theta_2\), but it is not slant submanifold. In fact we can chose a local orthonormal frame \(\{e_1, \ldots, e_5\}\) of \(TM\) such that
\[
\begin{align*}
 e_1 &= \frac{1}{\sqrt{2}}(2\left(\frac{\partial}{\partial x^1} + y^1 \frac{\partial}{\partial z}\right), \\
 e_2 &= \cos \theta_1(2\left(\frac{\partial}{\partial y^1}) + \sin \theta_1(2\left(\frac{\partial}{\partial y^2}), \\
 e_3 &= 2\left(\frac{\partial}{\partial x^3} + y^3 \frac{\partial}{\partial z}\right), \\
 e_4 &= \cos \theta_2(2\left(\frac{\partial}{\partial y^3}) + \sin \theta_2(2\left(\frac{\partial}{\partial y^4), \\
 e_5 &= 2\frac{\partial}{\partial z} = \xi.
\end{align*}
\]
Now we define the distributions \(D_1 = \langle e_1, e_2 \rangle\) and \(D_2 = \langle e_3, e_4 \rangle\). It is easy to see that both \(D_1\) and \(D_2\) are slant distribution with the same slant angle \(\theta_2\). Nevertheless, we can obtain that \(M\) is not slant since \(\theta_2 \neq 0\).

Definition. We say that \(M\) tangent to \(\xi\) is a **semi-slant** submanifold of \(\tilde{M}\) if there exist two orthogonal distributions \(D_1\) and \(D_2\) on \(M\) such that :

i) \(TM\) admits the orthogonal direct decomposition \(TM = D_1 \oplus D_2 \oplus \langle \xi \rangle\).

ii) The distribution \(D_1\) is an invariant distribution, i.e., \(\phi(D_1) = D_1\).

iii) The distribution \(D_2\) is slant with angle \(\theta \neq 0\).

Let \(2d_1 = \dim D_1\) and \(2d_2 = \dim D_2\).

In [3], the invariant distribution of a semi-slant submanifold is a slant distribution with zero angle. Thus, it is obvious that, in fact, semi-slant submanifolds are particular cases of bi-slant submanifolds. Moreover, it is clear that, if \(\theta = \frac{\pi}{2}\), then the semi-slant submanifold is a semi-invariant submanifold.

(a) If \(d_2 = 0\), then \(M\) is an invariant submanifold.

(b) If \(d_1 = 0\) and \(\theta = \frac{\pi}{2}\), then \(M\) is an anti-invariant submanifold.

(c) If \(d_1 = 0\) and \(\theta \neq \frac{\pi}{2}\), then \(M\) is a proper slant submanifold, with slant angle \(\theta\).

We say that a semi-slant submanifold is **proper** if \(d_1d_2 \neq 0\) and \(\theta \neq \frac{\pi}{2}\).
Examples of semi-slant submanifolds. (see [3])

Example 1. Let \mathbb{R}^6 be the Euclidean space of dimension 6, with the standard metric and the almost complex structure given by $J(\frac{\partial}{\partial x^i}) = \frac{\partial}{\partial x^i}$, for any $i = 1, 2, 3$, where (x^i, y^i) denote the Cartesian coordinates.

Let $\mathbb{R}^5 \hookrightarrow \mathbb{R}^6$ be the usual immersion. Then, $C = \frac{\partial}{\partial y^3}$ is the unit normal to \mathbb{R}^5 and so, $\xi = -JC = \frac{\partial}{\partial x^3}$.

Now, for any $\theta \neq 0$, we can consider the immersions:

$$\varphi_1 : \mathbb{R}^4 \rightarrow \mathbb{R}^6 : (u, v, t, s) \mapsto (u \cos \theta, u \sin \theta, t, v, 0, s),$$

$$\varphi_2 : \mathbb{R}^3 \rightarrow \mathbb{R}^5 : (u, v, t) \mapsto (u \cos \theta, u \sin \theta, t, v, 0).$$

We can directly prove that φ_1 is a semi-slant immersion, with complex distribution $D_1 = \left\langle \frac{\partial}{\partial x^3}, \frac{\partial}{\partial y^3} \right\rangle$ and slant distribution, with angle θ,

$$D_2 = \left\langle \cos \theta \frac{\partial}{\partial x^1} + \sin \theta \frac{\partial}{\partial x^2}, \frac{\partial}{\partial y^1} \right\rangle.$$

On the other hand, φ_2 is a θ-slant immersion, where \mathbb{R}^5 has the almost contact metric structure induced by the described almost Hermitian structure on \mathbb{R}^6.

For the other properties and examples of slant, bi-slant and semi-slant submanifolds in Sasakian manifolds, we refer to [2], [3].

Let M be an n-dimensional submanifold of a Riemannian manifold \tilde{M}. We denote by $K(p)$ the sectional curvature of M associated with a plane section $T_pM, p \in M$, and ∇ the Riemannian connection of M. Also, let h be the second fundamental form and R the Riemann curvature tensor of M.

Then the equation of Gauss is given by

$$\tilde{R}(X, Y, Z, W) = R(X, Y, Z, W) + g(h(X, W), h(Y, Z)) - g(h(X, Z), h(Y, W)),$$

for any vectors X, Y, Z, W tangent to M.

Let $p \in M$ and $\{e_1, \ldots, e_n\}$ an orthonormal basis of the tangent space T_pM. We denote by H the mean curvature vector, that is

$$H(p) = \frac{1}{n} \sum_{i=1}^{n} h(e_i, e_i).$$

Also, we set

$$h_{i}^{j} = g(h(e_i, e_j), e_r)$$

and

$$\|h\|^2 = \sum_{i,j=1}^{n} g(h(e_i, e_j), h(e_i, e_j)).$$

For any tangent vector field X to M, we put $\phi X = PX + FX$, where PX and FX are the tangential and normal components of ϕX, respectively. We denote by

$$\|P\|^2 = \sum_{i,j=1}^{n} g^2(Pe_i, e_j).$$

Suppose L is a k-plane section of T_pM and X a unit vector in L. We choose an orthonormal basis $\{e_1, \ldots, e_k\}$ of L such that $e_1 = X$.
Define the *Ricci curvature* Ric_L of L at X by

$$\text{Ric}_L(X) = K_{12} + K_{13} + \cdots + K_{1k},$$

where K_{ij} denotes the sectional curvature of the 2-plane section spanned by e_i, e_j. We simply called such a curvature a k-Ricci curvature.

The *scalar curvature* τ of the k-plane section L is given by

$$\tau(L) = \sum_{1 \leq i < j \leq k} K_{ij}.$$

For each integer k, $2 \leq k \leq n$, the Riemannian invariant Θ_k on an n-dimensional Riemannian manifold M is defined by

$$\Theta_k(p) = \frac{1}{k-1} \inf_{L, X} \text{Ric}_L(X), \quad p \in M,$$

where L runs over all k-plane sections in $T_p M$ and X runs over all unit vectors in L.

Recall that for a submanifold M in a Riemannian manifold, the *relative null space* of M at a point $p \in M$ is defined by

$$\mathcal{N}_p = \{X \in T_p M | h(X, Y) = 0, \text{ for all } Y \in T_p M\}.$$

2. Ricci curvature and squared mean curvature

Chen established a sharp relationship between the Ricci curvature and the squared mean curvature for submanifolds in real space forms (see [6]).

We prove similar inequalities for slant, bi-slant and semi-slant submanifolds in a Sasakian space form.

We consider submanifolds M tangent to the Reeb vector field ξ.

Theorem 2.1. Let M be an $(n = 2k + 1)$-dimensional θ-slant submanifold tangent to ξ in a $(2m + 1)$-dimensional Sasakian space form $M(c)$. Then:

(i) For each unit vector $X \in T_p M$ orthogonal to ξ, we have

$$\text{Ric}(X) \leq \frac{1}{4} \left((n-1)(c+3) + \frac{1}{2}(3 \cos^2 \theta - 2)(c-1) + n^2 \|H\|^2 \right).$$

(ii) If $H(p) = 0$, then a unit tangent vector $X \in T_p M$ orthogonal to ξ satisfies the equality case of (2.1) if and only if $X \in \mathcal{N}_p$.

(iii) The equality case of (2.1) holds identically for all unit tangent vectors orthogonal to ξ at p if and only if p is a totally geodesic point.

Proof. Let $X \in T_p M$ be a unit tangent vector X at p, orthogonal to ξ. We choose an orthonormal basis $e_1, \ldots, e_n = \xi, e_{n+1}, \ldots, e_{2m+1}$ such that e_1, \ldots, e_n are tangent to M at p, with $e_1 = X$.

Then, from the equation of Gauss, we have

$$n^2 \|H\|^2 = 2\tau + \|h\|^2 - n(n-1) \frac{c+3}{4} - \frac{3(n-1) \cos^2 \theta - 2n+2}{4} \frac{c-1}{4}.$$
From (2.2), we get

\[n^2 \|H\|^2 = 2\tau + \sum_{r=1}^{2m+1} [(h_{i1}^r)^2 + (h_{i2}^r + \cdots + h_{nn}^r)^2 + 2 \sum_{i<j} (h_{ij}^r)^2] \]

\[- 2 \sum_{r=n+1}^{2m+1} \sum_{2 \leq i \leq j \leq n} h_{ii}^r h_{jj}^r - n(n-1) \frac{c+3}{4} - [3(n-1) \cos^2 \theta - 2n + 2] \frac{c-1}{4} \]

\[= 2\tau + \frac{1}{2} \sum_{r=n+1}^{2m+1} [(h_{i1}^r + \cdots + h_{nn}^r)^2 + (h_{i1}^r - h_{i2}^r - \cdots - h_{nn}^r)^2] + 2 \sum_{r=n+1}^{2m+1} \sum_{i<j} (h_{ij}^r)^2 \]

\[- 2 \sum_{r=n+1}^{2m+1} \sum_{2 \leq i \leq j \leq n} h_{ii}^r h_{jj}^r - n(n-1) \frac{c+3}{4} - [3(n-1) \cos^2 \theta - 2n + 2] \frac{c-1}{4}. \]

From the equation of Gauss, we find

\[K_{ij} = \sum_{r=n+1}^{2m+1} [h_{i1}^r h_{22}^r - (h_{12}^r)^2] + 3 \cos^2 \theta \cdot \frac{c-1}{4} + \frac{c+3}{4} \]

and consequently

\[\sum_{2 \leq i \leq j \leq n} K_{ij} = \sum_{r=n+1}^{2m+1} \sum_{2 \leq i \leq j \leq n} [h_{ii}^r h_{jj}^r - (h_{ij}^r)^2] + \frac{(n-1)(n-2)}{2} c + 3 \frac{c-1}{4} + [3(n-1) \cos^2 \theta - 3 \cos^2 \theta - 2n + 4] \frac{c-1}{8}. \]

Substituting (2.4) in (2.3), one gets

\[\frac{1}{2} n^2 \|H\|^2 \geq 2 \text{Ric}(X) - 2(n-1) \frac{c+3}{4} - (3 \cos^2 \theta - 2) \frac{c-1}{4}, \]

which is equivalent to (2.1).

(ii) Assume \(H(p) = 0 \). Equality holds in (2.1) if and only if

\[\begin{align*}
 h_{12}^r &= \cdots = h_{1n}^r = 0, \\
 h_{i1}^r &= h_{i2}^r + \cdots + h_{nn}^r, r \in \{n+1, \ldots, 2m\}.
\end{align*} \]

Then \(h_{ij}^r = 0 \), for every \(j \in \{1, \ldots, n\}, r \in \{n+1, \ldots, 2m\} \), that is \(X \in \mathcal{N}_p \).

(iii) The equality case of (2.1) holds for all unit tangent vectors orthogonal to \(\xi \) at \(p \) if and only if

\[\begin{align*}
 h_{ij}^r &= 0, i \neq j, r \in \{n+1, \ldots, 2m\}, \\
 h_{i1}^r + \cdots + h_{n}^r - 2h_{ii}^r &= 0, \quad i \in \{1, \ldots, n\}, r \in \{n+1, \ldots, 2m\}.
\end{align*} \]

In this case, since \(\xi \) is tangent to \(M \), it follows that a totally umbilical point is totally geodesic.

\[\square \]

Theorem 2.2. Let \(M \) be an \((n = 2d_1 + 2d_2 + 1)\)-dimensional bi-slant submanifold satisfying \(g(X, \phi Y) = 0 \), for any \(X \in T_1 \) and any \(X \in T_2 \), tangent to \(\xi \) in a \((2m + 1)\)-dimensional Sasakian space form \(M(c) \). Then:

(i) For each unit vector \(X \in T_p M \) orthogonal to \(\xi \) and if

a) \(X \) is tangent to \(T_1 \) we have

\[\text{Ric}(X) \leq \frac{1}{4} ((n-1)(c+3) + \frac{1}{2}(3 \cos^2 \theta_1 - 2)(c-1) + n^2 \|H\|^2) \]

and if
b) X is tangent to D_2 we have

$$(2.7') \quad \text{Ric}(X) \leq \frac{1}{4} \left(\frac{1}{4} - 1 \right) \left(n - 1 \right) \left(c + 3 \right) + \frac{1}{2} \left(3 \cos^2 \theta_2 - 2 \right) \left(c - 1 \right) + n^2 \| H \|^2 \right).$$

(ii) If $H(p) = 0$, then a unit tangent vector $X \in T_p M$ orthogonal to ξ satisfies the equality case of (2.7) and (2.7') if and only if $X \in N_p$.

(iii) The equality case of (2.7) and (2.7') holds identically for all unit tangent vectors orthogonal to ξ at p if and only if p is a totally geodesic point.

Proof. Let $X \in T_p M$ be a unit tangent vector X at p, orthogonal to ξ. We choose an orthonormal basis $e_1, \ldots, e_n = \xi, e_{n+1}, \ldots, e_{2m+1}$ such that e_1, \ldots, e_n are tangent to M at p, with $e_1 = X$.

Then, from the equation of Gauss, we have

$$(2.8) \quad n^2 \| H \|^2 = 2\tau + \| h \|^2 - \frac{1}{4} \left[\frac{n(n-1)}{4} + 2 n + 2 \right] \frac{c - 1}{4}.$$

From (2.8), we get

$$
2m+1 \sum_{r=n+1}^{2m+1} \sum_{1 \leq i < j \leq n} h_{ij}^r - n(n-1) \frac{c + 3}{4} - 6(d_1 \cos^2 \theta_1 + d_2 \cos^2 \theta_2) - 2n + 2 \frac{c - 1}{4} =
$$

$$= 2\tau + \frac{1}{2} \sum_{r=n+1}^{2m+1} \sum_{1 \leq i < j \leq n} \left[h_{ij}^r - n(n-1) \frac{c + 3}{4} - 6(d_1 \cos^2 \theta_1 + d_2 \cos^2 \theta_2) - 2n + 2 \frac{c - 1}{4} \right] +
$$

$$+ 2 \sum_{r=n+1}^{2m+1} \sum_{1 \leq i < j \leq n} \left[h_{ij}^r - n(n-1) \frac{c + 3}{4} \right] - [6(d_1 \cos^2 \theta_1 + d_2 \cos^2 \theta_2) - 2n + 2 \frac{c - 1}{4}].$$

From the equation of Gauss, we find:

a) if X is tangent to D_1

$$K_{ij} = \sum_{r=n+1}^{2m+1} \frac{h_{11}^r h_{22}^r - (h_{12}^r)^2}{2} + 3 \cos^2 \theta_1 \cdot \frac{c - 1}{4} + \frac{c + 3}{4}$$

and consequently

$$(2.10) \quad \sum_{2 \leq i < j \leq n} K_{ij} = \sum_{r=n+1}^{2m+1} \sum_{2 \leq i < j \leq n} \frac{h_{ij}^r}{2} + \frac{(n - 1)(n - 2) \frac{c + 3}{4}}{2} +
$$

$$+ [6(d_1 \cos^2 \theta_1 + d_2 \cos^2 \theta_2) - 3 \cos^2 \theta_1 - 2n + 4] \frac{c - 1}{8}.$$

Substituting (2.10) in (2.9), one gets

$$\frac{1}{2} n^2 \| H \|^2 \geq 2 \text{Ric}(X) - 2(n - 1) \frac{c + 3}{4} - (3 \cos^2 \theta_1 - 2) \frac{c - 1}{4},$$

which is equivalent to (2.7).

b) Similar if X is tangent to D_2, we have

$$K_{ij} = \sum_{r=n+1}^{2m+1} \frac{h_{ij}^r}{2} + 3 \cos^2 \theta_2 \cdot \frac{c - 1}{4} + \frac{c + 3}{4}.$$
and consequently

\begin{equation}
\sum_{2 \leq i < j \leq n} K_{ij} = \sum_{r = n+1}^{2m+1} \sum_{2 \leq i < j \leq n} \left[h_{ij}^r - (h_{ij}^r)^2 \right] + \frac{(n-1)(n-2)(c+3)}{4} + \frac{6(d_1 \cos^2 \theta_1 + d_2 \cos^2 \theta_2) - 3 \cos^2 \theta_2 - 2n + 4}{8} \cdot \frac{c-1}{4}.
\end{equation}

Substituting (2.11) in (2.9), one gets

\begin{equation}
\frac{1}{2} n^2 \| H \|^2 \geq 2 \text{Ric}(X) - (n-1) \left(\frac{c+3}{4} - (3 \cos^2 \theta_2 - 2) \frac{c-1}{4} \right),
\end{equation}

which is equivalent to (2.7').

(ii) Assume \(H(p) = 0 \). Equality holds in (2.7) and (2.7') if and only if

\begin{equation}
\begin{aligned}
&h_{12}^r = \ldots = h_{1n}^r = 0, \\
&h_{11}^r = h_{22}^r + \ldots + h_{nn}^r, r \in \{n + 1, \ldots, 2m\}.
\end{aligned}
\end{equation}

Then \(h_{ij}^r = 0 \), for every \(j \in \{1, \ldots, n\}, r \in \{n + 1, \ldots, 2m\} \), that is \(X \in \mathcal{N}_p \).

(iii) The equality case of (2.7) and (2.7') holds for all unit tangent vectors orthogonal to \(\xi \) at \(p \) if and only if

\begin{equation}
\begin{aligned}
&h_{ij}^r = 0, i \neq j, r \in \{n + 1, \ldots, 2m\}, \\
&h_{11}^r + \ldots + h_{nn}^r - 2h_{ii}^r = 0, \quad i \in \{1, \ldots, n\}, r \in \{n + 1, \ldots, 2m\}.
\end{aligned}
\end{equation}

In this case, since \(\xi \) is tangent to \(M \), it follows that a totally umbilical point is totally geodesic.

\begin{corollary}
Let \(M \) be an \((n = 2d_1 + 2d_2 + 1) \)-dimensional semi-slant submanifold in a \((2m+1)\)-dimensional Sasakian space form \(\tilde{M}(c) \). Then:

(i) For each unit vector \(X \in T_pM \) orthogonal to \(\xi \) and if a \(X \) is tangent to \(D_1 \) we have

\begin{equation}
\text{Ric}(X) \leq \frac{1}{4} ((n-1)(c+3) - (c-1) + n^2 \| H \|^2)
\end{equation}

and if b \(X \) is tangent to \(D_2 \) we have

\begin{equation}
\text{Ric}(X) \leq \frac{1}{4} ((n-1)(c+3) + \frac{1}{2} (3 \cos^2 \theta - 2)(c-1) + n^2 \| H \|^2).
\end{equation}

(ii) If \(H(p) = 0 \), then a unit tangent vector \(X \in T_pM \) orthogonal to \(\xi \) satisfies the equality case of (2.14) and (2.14') if and only if \(X \in \mathcal{N}_p \).

(iii) The equality case of (2.14) and (2.14') holds identically for all unit tangent vectors orthogonal to \(\xi \) at \(p \) if and only if \(p \) is a totally geodesic point.

\end{corollary}

\begin{corollary}
Let \(M \) be an \((n = 2k+1) \)-dimensional invariant submanifold in a \((2m+1)\)-dimensional Sasakian space form \(\tilde{M}(c) \). Then:

(i) For each unit vector \(X \in T_pM \) orthogonal to \(\xi \), we have

\begin{equation}
\text{Ric}(X) \leq \frac{1}{4} ((n-1)(c+3) + \frac{1}{2} (c-1)).
\end{equation}

(ii) A unit tangent vector \(X \in T_pM \) orthogonal to \(\xi \) satisfies the equality case of (2.15) if and only if \(X \in \mathcal{N}_p \).

(iii) The equality case of (2.15) holds identically for all unit tangent vectors orthogonal to \(\xi \) at \(p \) if and only if \(p \) is a totally geodesic point.

\end{corollary}
Corollary 2.5. Let M be an $(n = 2k + 1)$-dimensional anti-invariant submanifold in a $(2m + 1)$-dimensional Sasakian space form $\tilde{M}(c)$. Then:

(i) For each unit vector $X \in T_pM$ orthogonal to ξ, we have

$$\text{Ric}(X) \leq \frac{1}{4} \{(n - 1)(c + 3) - (c - 1) + n^2\|H\|^2\}.$$

(ii) If $H(p) = 0$, then a unit tangent vector $X \in T_pM$ orthogonal to ξ satisfies the equality case of (2.16) if and only if $X \in \mathcal{N}_p$.

(iii) The equality case of (2.16) holds identically for all unit tangent vectors orthogonal to ξ at p if and only if p is a totally geodesic point.

3. k-Ricci curvature

In this section, we prove a relationship between the k-Ricci curvature and the squared mean curvature for slant, bi-slant and semi-slant submanifolds in a Sasakian space form.

We state an inequality between the scalar curvature and the squared mean curvature for submanifolds tangent to ξ.

Theorem 3.1. Let M be an $(n = 2k + 1)$-dimensional θ-slant submanifold in a $(2m + 1)$-dimensional Sasakian space form $\tilde{M}(c)$ tangent to ξ. Then we have

$$\|H\|^2 \geq \frac{2\tau}{n(n - 1)} - \frac{c + 3}{4} - \frac{3(n - 1)\cos^2 \theta - 2n + 2(c - 1)}{4n(n - 1)}.$$

Proof. We choose an orthonormal basis $\{e_1, \ldots, e_n = \xi, e_{n+1}, \ldots, e_{2m+1}\}$ at p such that e_{n+1} is parallel to the mean curvature vector $H(p)$ and e_1, \ldots, e_n diagonalize the shape operator A_{n+1}. Then the shape operators take the forms

$$A_{n+1} = \begin{pmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_n \end{pmatrix}$$

$$A_r = (h_{ij}^r), i, j = 1, \ldots, n, r = n + 2, \ldots, 2m + 1, \text{trace } A_r = \sum_{i=1}^{n} h_{ii}^r = 0.$$

From (2.2), we get

$$n^2\|H\|^2 = 2\tau + \sum_{i=1}^{n} a_i^2 + \sum_{r=n+2}^{2m+1} \sum_{i,j=1}^{n} (h_{ij}^r)^2 - n(n - 1)\frac{c + 3}{4} -$$

$$- [3(n - 1)\cos^2 \theta - 2n + 2]\frac{c - 1}{4}.$$

On the other hand, since

$$0 \leq \sum_{i<j} (a_i - a_j)^2 = (n - 1)\sum_{i} a_i^2 - 2\sum_{i<j} a_i a_j,$$

we obtain

$$n^2 \|H\|^2 = (\sum_{i=1}^{n} a_i)^2 = \sum_{i=1}^{n} a_i^2 + 2\sum_{i<j} a_i a_j \leq n\sum_{i=1}^{n} a_i^2,$$

which implies

$$\sum_{i=1}^{n} a_i^2 \geq n\|H\|^2.$$
Since we have that
\[
(3.5) \quad n^2\|H\|^2 \geq 2\tau + n\|H\|^2 - n(n-1) \frac{c+3}{4} - [3(n-1)\cos^2\theta - 2n + 2] \frac{c-1}{4},
\]
which is equivalent to (3.1).

Let \(\{e_1, \ldots, e_n\}\) be an orthonormal basis of \(T_p M\). Denote by \(L_{i_1 \ldots i_k}\) the \(k\)-plane section spanned by \(e_{i_1}, \ldots, e_{i_k}\). It follows from (1.7) and (1.8) that
\[
(3.6) \quad \tau(L_{i_1 \ldots i_k}) = \frac{1}{2} \sum_{i \in \{i_1, \ldots, i_k\}} \text{Ric}_{L_{i_1 \ldots i_k}}(e_i),
\]
\[
(3.7) \quad \tau(p) = \frac{1}{c_{n-2}} \sum_{1 \leq i_1 < \ldots < i_k \leq n} \tau(L_{i_1 \ldots i_k}).
\]

Combining (1.9), (3.6) and (3.7), we find
\[
(3.8) \quad \tau(p) \geq \frac{n(n-1)}{2} \Theta_k(p).
\]

From (3.6), (3.7) and (3.1), we get the following.

Theorem 3.2. Let \(M\) be an \((n = 2d_1 + 2d_2 + 1)\)-dimensional bi-slant submanifold satisfying \(g(X,\phi Y) = 0\), for any \(X \in \mathcal{D}_1\) and any \(X \in \mathcal{D}_2\), in a \((2m + 1)\)-dimensional Sasakian space form \(\tilde{M}(c)\) tangent to \(\xi\). Then we have
\[
(3.9) \quad \|H\|^2 \geq \frac{2\tau}{n(n-1)} - \frac{c + 3}{4} - \frac{[3(d_1 \cos^2\theta_1 + d_2 \cos^2\theta_2) - n + 1](c - 1)}{2n(n-1)}.
\]

Proof. The proof is similar with their corresponding statements of Theorem 3.1. \(\square\)

Theorem 3.3. Let \(M\) be an \((n = 2d_1 + 2d_2 + 1)\)-dimensional semi-slant submanifold in a \((2m + 1)\)-dimensional Sasakian space form \(\tilde{M}(c)\) tangent to \(\xi\). Then we have
\[
(3.10) \quad \|H\|^2 \geq \frac{2\tau}{n(n-1)} - \frac{c + 3}{4} - \frac{[3(d_1 + d_2 \cos^2\theta) - n + 1](c - 1)}{2n(n-1)}.
\]

Proof. The proof is similar with their corresponding statements of Theorem 3.1. \(\square\)

Theorem 3.4. Let \(M\) be an \((n = 2k + 1)\)-dimensional \(\theta\)-slant submanifold in a \((2m + 1)\)-dimensional Sasakian space form \(\tilde{M}(c)\) tangent to \(\xi\). Then, for any integer \(k\), \(2 \leq k \leq n\), and any point \(p \in M\), we have
\[
(3.11) \quad \|H\|^2(p) \geq \Theta_k(p) - \frac{c + 3}{4} - \frac{[3(n-1)\cos^2\theta - 2n + 2](c - 1)}{4n(n-1)}.
\]

Theorem 3.5. Let \(M\) be an \((n = 2d_1 + 2d_2 + 1)\)-dimensional bi-slant submanifold in a \((2m + 1)\)-dimensional Sasakian space form \(\tilde{M}(c)\) tangent to \(\xi\). Then, for any integer \(k\), \(2 \leq k \leq n\), and any point \(p \in M\), we have
\[
(3.12) \quad \|H\|^2(p) \geq \Theta_k(p) - \frac{c + 3}{4} - \frac{[3(d_1 \cos^2\theta_1 + d_2 \cos^2\theta_2) - n + 1](c - 1)}{2n(n-1)}.
\]

Theorem 3.6. Let \(M\) be an \((n = 2d_1 + 2d_2 + 1)\)-dimensional semi-slant submanifold in a \((2m + 1)\)-dimensional Sasakian space form \(\tilde{M}(c)\) tangent to \(\xi\). Then, for any integer \(k\), \(2 \leq k \leq n\), and any point \(p \in M\), we have
\[
(3.13) \quad \|H\|^2(p) \geq \Theta_k(p) - \frac{c + 3}{4} - \frac{[3(d_1 + d_2 \cos^2\theta) - n + 1](c - 1)}{2n(n-1)}.
\]
Corollary 3.7. Let M be an n-dimensional invariant submanifold of a Sasakian space form $\tilde{M}(c)$. Then, for any integer $k, 2 \leq k \leq n$, and any point $p \in M$, we have
\[\Theta_k(p) \leq \frac{c + 3}{4} + \frac{c - 1}{4n}. \]

Corollary 3.8. Let M be an n-dimensional anti-invariant submanifold of a Sasakian space form $\tilde{M}(c)$. Then, for any integer $k, 2 \leq k \leq n$, and any point $p \in M$, we have
\[\|H\|^2(p) \geq \Theta_k(p) - \frac{c + 3}{4} + \frac{c - 1}{2n}. \]

Corollary 3.9. Let M be an n-dimensional contact CR submanifold ($\theta_1 = 0, \theta_2 = \frac{\pi}{2}$) of a Sasakian space form $\tilde{M}(c)$. Then, for any integer $k, 2 \leq k \leq n$, and any point $p \in M$, we have
\[\|H\|^2(p) \geq \Theta_k(p) - \frac{c + 3}{4} - \frac{(3d_1 - n + 1)(c - 1)}{2n(n - 1)} \]
where $2d_1 = \dim \mathcal{D}_1$.

References

Received July 3, 2003.

University Politehnica of Bucharest,
Department of Mathematics I,
Splaiul Independentei 313
77206 Bucharest, ROMANIA
E-mail address: tiabaprov@pcnet.ro