ON THE CHERN–WEIL HOMOMORPHISM IN FINSLER SPACES

Z. KOVÁCS

Dedicated to Professor Árpád Varecza on the occasion of his 60th birthday

Abstract. The aim of this paper is to devise a Chern–Weil-type construction for a Finsler manifold \((M, L)\) which is determined only by the manifold \(M\) and by the Finslerian fundamental function \(L\).

1. Introduction

The focus in this paper is to set up a framework in which the famous Chern–Weil homomorphism can be formulated on a Finsler manifold. Most of the basic notations in this paper are the same as in [GHV73]. Background information on Finsler geometry can be found e.g. in [Mat86] and [AP94].

Let \((M, L)\) be a Finsler space, the horizontal projection determined by the Finslerian fundamental function \(L\) is \(h\). \(h\) can be interpreted as a \(\tau_{TM}\)-valued 1-form on \(TM\): \(h \in \Lambda^1(TM; \tau_{TM}) \cong \text{Hom}(\tau_{TM}; \tau_{TM})\). The horizontal subbundle of \(\tau_{TM}\) will be denoted by \(HM\), \(\text{Sec}HM = X_h(TM)\).

Denote by \((\Lambda(TM), \wedge)\) the graded algebra of differential forms on \(TM\). From \(h\) one can derive a first order graded derivative \(dh: \Lambda(TM) \rightarrow \Lambda(TM)\)

\[
d_h \omega(X_0, \ldots, X_p) = \sum_{i=0}^{p} (-1)^i h^{X_i} \omega(X_0, \ldots, \hat{X}_i, \ldots, X_p) + \sum_{i<j} (-1)^{i+j} \omega([X_i, X_j]_h, X_0, \ldots, \hat{X}_i, \ldots, \hat{X}_j, \ldots, X_p)
\]

where \(\omega \in \Lambda^p(TM) (p \geq 1)\) is a \(p\)-form, \(X_i \in \mathfrak{x}(TM) (i = 0 \ldots p)\), \([X, Y]_h = [hX, Y] + [X, hY] - h[X, Y]\), furthermore \(d_h f(X) = (hX)f\) \((f \in \Lambda^0(TM) \equiv C^\infty(TM))\) ([FN56] or [Mic87]). It is easy to see that \(d_h^2 = 0\) iff the Frölicher–Nijenhuis bracket of the operator pair \((h, h)\) is zero: \([h, h] = 0\). In the Finslerian case this condition means that the torsion \(R^1\) of the unique Cartan connection vanishes, i.e. the horizontal distribution is integrable.

In the Finslerian case this special situation was studied in [ACD87] and their main result is the following:

Theorem. If \(R^1 = 0\) then the cohomology groups of \(d_h\) are isomorphic to the de Rham cohomology groups of an integral manifold of the nonlinear connection associated to \(L\).

2000 Mathematics Subject Classification. 53C05.

Key words and phrases. Chern–Weil homomorphism, twisted cohomology, Frölicher–Nijenhuis theory.

This research was supported by the grant FKFP 0690/99.
In this paper we do not suppose the integrability of the horizontal distribution.

2. Tools

Forms. Let $\nabla^C : \mathfrak{X}(T^*M) \times \mathfrak{X}_h T^*M \to \mathfrak{X}_h T^*M$ be the Cartan connection of the Finsler space (M, \mathcal{L}). Then (∇, h), where $\nabla : \mathfrak{X}(T^*M) \times \mathfrak{X}_h T^*M \to \mathfrak{X}_h T^*M$, $\nabla X = \nabla^C_X Y$, is the so-called h-connection of the Finsler space.

By easy calculations, one can show the following statement:

Proposition 1. Let (∇, h) be the h-connection of the Finsler space. The map

$$\nabla : A(TM; H^*) \to A(TM; H^*)$$

where

$$(\nabla \Psi)(X_0, \ldots, X_p) = \sum_{i=0}^p (-1)^i\nabla X_i \Psi(X_0, \ldots, \hat{X}_i, \ldots, X_p) +
+ \sum_{i<j} (-1)^{i+j} \Psi([X_i, X_j]h, \ldots, \hat{X}_i, \ldots, \hat{X}_j, \ldots, X_p)$$

$(\Psi \in A^p(TM; H^*)) (p > 0)$; for $p = 0$: $(\nabla \sigma)(X) = \nabla X \sigma$ is a first order graded derivation of the graded algebra of H^*-valued forms on TM in the sense of [Mic87].

We will use the following construction in the next section. Let $\xi_0, \xi_1, \ldots, \xi_m$ be vector bundles with the same base B and let $\phi \in \text{Hom}(\xi_1, \ldots, \xi_m; \xi_0)$. ϕ determines a map $\phi_* \in \text{Hom}(A(B; \xi_1), \ldots, A(B; \xi_m); A(B; \xi_0))$ as follows.

$$\phi_*(\sigma_1, \ldots, \sigma_m) = \phi(\sigma_1, \ldots, \sigma_m)$$

for $\sigma_i \in A^0(B; \xi_i) \equiv \text{Sec} \xi_i$, and for elements in $A^p(B; \xi_i)$ this map is determined by

$$\phi_* (\omega_1 \wedge \sigma_1, \ldots, \omega_m \wedge \sigma_m) = (\omega_1 \wedge \ldots \wedge \omega_m) \wedge \phi_*(\sigma_1, \ldots, \sigma_m)$$

where $\omega_i \in A(B)$, $\sigma_i \in A^0(B; \xi_i)$ $(i = 1 \ldots m)$. ϕ_* satisfies the following identity:

$$(1) \quad \phi_*(\psi_1, \ldots, \omega \wedge \psi_1, \ldots, \psi_m) = (-1)^q \omega \wedge \phi_*(\psi_1, \ldots, \psi_m)$$

where $\psi_i \in A^q(B; \xi_i)$, $q_i = p_1 + \ldots + p_{i-1}$ $(i \geq 2)$, $q_1 = 0$, $\omega \in A^q(B)$, and moreover,

$$(2) \quad \phi_*(\psi_1, \ldots, \psi_m)(X_1, \ldots, X_p) =
= \frac{1}{p_1! \ldots p_m!} \sum_{\sigma \in \mathfrak{S}_p} \varepsilon(\sigma) \phi(\psi_1(X_{\sigma(1)}), \ldots, \psi_m(X_{\sigma(p)}))$$

where $\psi_i \in A^q(B; \xi_i)$, $X_i \in \mathfrak{X}(B)$ $(i = 1 \ldots p)$, $p = p_1 + \ldots + p_m$.

Invariant polynomials. Let F be a real vector space. An *invariant polynomial of degree p* is a symmetric map

$$f^p \in \text{Hom}(L(F; F), \ldots, L(F; F); \mathbb{R})$$

such that for all $a \in \text{GL}(F)$

$$(3) \quad f^p(\text{Ad}(a)\alpha_1, \ldots, \text{Ad}(a)\alpha_p) = f^p(\alpha_1, \ldots, \alpha_p)$$

where $\alpha_i \in L(F; F)$ $(i = 1 \ldots p)$ is a linear operator and $\text{Ad} : \text{GL}(F) \to \text{GL}(L(F; F))$ is the adjoint representation. By the invariance condition (3) one can extend f^p to the bundle of linear operators over the vector bundle ξ with base manifold B and the typical fiber F.

$$f^p \in \text{Hom}(L\xi, \ldots, L\xi; B \times \mathbb{R}) \cong \text{Sec}(L\xi \otimes \cdots \otimes L\xi)^*.$$

This f^p is called invariant polynomial in ξ of degree p.

Curvature. Let $R^2 \in \Lambda^2(TM;L_{HM})$ denote the curvature of the Cartan connection.

Proposition 2. The h-Finsler connection (∇,h) in HM satisfies:

$$[(\nabla R^2)(X,Y,Z)](W) = \mathfrak{S}_{(X,Y,Z)} \{ P^2(R^1(X,Y)(hZ)(W)) \}$$

where P^2 is the h-curvature, $R^1 = \frac{1}{2}[h,h]$ and $\mathfrak{S}_{(X,Y,Z)}$ is the symbol of the cyclic sum with respect to X,Y,Z.

3. Construction of $d h$-closed forms

Theorem. Let (∇,h) be the h-Finsler connection, f^p an invariant polynomial in HM. If $\nabla R^2 = 0$ then $d_h f^p(R^2,\ldots,R^2) = 0$, i.e. $f^p(R^2,\ldots,R^2)$ is a d_h-closed 2p-form.

Proof. We have found the adequate ideas, so the proof of the theorem is quite easy. First we prove the following statement:

Lemma. Let $f \in \text{Hom}(L_{HM},\ldots,L_{HM}; TM \times \mathbb{R}) \cong \text{Sec}(L_{HM} \otimes \cdots \otimes L_{HM})^*$. If $\nabla_X f = 0$ for any $X \in \mathfrak{X}(TM)$ then

$$d_h f(\Omega_1,\ldots,\Omega_p) = \sum_{i=1}^{p} (-1)^{q_i} f_s(\Omega_1,\ldots,\nabla\Omega_i,\ldots,\Omega_p),$$

where $\Omega_i \in \Lambda^r(TM;L_{HM})$ ($i = 1 \ldots p$), $q_i = r_1 + \cdots + r_{i-1}$ ($i = 2 \ldots p$), $q_1 = 0$. (Concerning $f_s \in \text{Hom}(A(TM;L_{HM}),\ldots,A(TM;L_{HM}); A(TM))$ see (2)!)

Clearly, $\Lambda^r(TM;L_{HM}) \cong \Lambda^r(TM) \otimes \text{Sec}_{L_{HM}}$. If $\alpha_i \in \text{Sec}_{L_{HM}}$ ($i = 1 \ldots p$) then (4) reduces to:

$$d_h f(\alpha_1,\ldots,\alpha_p) = \sum_{i=1}^{p} f_s(\alpha_1,\ldots,\nabla\alpha_i,\ldots,\alpha_p).$$

We have $(d_h f(\alpha_1,\ldots,\alpha_p))(X) = hX f(\alpha_1,\ldots,\alpha_p)$. On the other hand,

$$\sum_{i=1}^{p} f_s(\alpha_1,\ldots,\nabla\alpha_i,\ldots,\alpha_p)(X) \overset{(2)}{=} \sum_{i=1}^{p} f(\alpha_1,\ldots,\nabla(\alpha_i))(X),\ldots,\alpha_p).$$

Together with the previous line this proves the statement.

Let $\Omega_i \in \Lambda^r(TM;L_{HM})$ ($i = 1 \ldots p$), $\Omega_i = \omega_i \wedge \alpha_i$ ($\omega_i \in \Lambda^r(TM)$ $i = 1 \ldots p$), and $q = r_1 + \cdots + r_p$. By induction we infer

$$d_h f_s(\omega_1 \wedge \alpha_1,\ldots,\omega_p \wedge \alpha_p) \overset{(1)}{=}$$

$$= \sum_{i=1}^{p} (-1)^{q_i} \omega_1 \wedge \ldots \wedge d_h \omega_i \wedge \ldots \wedge \omega_p \wedge f_s(\alpha_1,\ldots,\alpha_p) +$$

$$+ (-1)^q \omega_1 \wedge \ldots \wedge \omega_p \wedge d_h f_s(\alpha_1,\ldots,\alpha_p).$$

Similarly,

$$f_s(\omega_1 \wedge \alpha_1,\ldots,\nabla(\omega_1 \wedge \alpha_i),\ldots,\omega_p \wedge \alpha_p) =$$

$$= \omega_1 \wedge \ldots \wedge d_h \omega_1 \wedge \ldots \wedge \omega_p \wedge f_s(\alpha_1,\ldots,\alpha_p) +$$

$$+ (-1)^r (-1)^{r+1} \ldots (-1)^p \omega_1 \wedge \ldots \wedge \omega_p \wedge f_s(\alpha_1,\ldots,\nabla\alpha_i,\ldots,\alpha_p).$$

We proved the lemma.

Now, for an invariant polynomial f^p, $\nabla_X f^p = \nabla_{hX} f^p = 0$ and applying the lemma for $\Omega_i = R^2$ we get the statement of the theorem. □
4. Remarks

Pseudocomplexes. For d_h we have a sequence of graded vector spaces

$$(PS) \cdots \longrightarrow \Lambda^{p-1}(TM) \xrightarrow{d_h} \Lambda^{p}(TM) \xrightarrow{d_h} \Lambda^{p+1}(TM) \longrightarrow \cdots$$

where $d_h \circ d_h$ is not necessarily zero. Following I. Vaisman [Vai68], for (PS) we use the name of pseudocomplex. Of course, when $[h, h] = 0$ then (PS) is a usual cochain complex.

In the case of non-vanishing d^2_h the most natural way to define cohomology groups is by

$$H^p(d_h, TM) = \frac{\text{Ker} d_h}{\text{Im} d_h \cap \text{Ker} d_h}.$$

These $H^p(d_h, TM)$ cohomology groups are usual cohomology groups of several cochain complexes. We put

$$(\tilde{PS}) \cdots \longrightarrow \Lambda^{p-1}(TM) \xrightarrow{\tilde{d}_h} \Lambda^{p}(TM) \xrightarrow{\tilde{d}_h} \Lambda^{p+1}(TM) \longrightarrow \cdots$$

where

$$\Lambda^{p}(TM) = \text{Ker} d_h \circ d_h.$$

and \tilde{d}_h is the restriction of d_h to $\Lambda^{p}(TM)$. Then it is easy to check that in the case of $(\tilde{PS}) d^2_h = 0$ holds and the cochain complex (\tilde{PS}) has the same cocycles and coboundaries as the pseudocomplex (PS) itself ([HL75], [Vai93]).

Finsler spaces with the condition $\nabla R^2 = 0$. There are several examples for Finsler spaces with vanishing curvature R^2. This condition implies the required identity $\nabla R^2 = 0$, c.f. Proposition 2. These spaces are the so called Landsberg spaces ([Koz96], [Mat96]).

References

Received November 4, 2000

E-mail address: kovacs@zeus.nyf.hu

College of Nyíregyháza,
Institute of Mathematics and Computer Science,
Nyíregyháza, P.O. Box 166.,
H-4401, Hungary