ON THE GENERALIZED CESÀRO SUMMABILITY FACTORS

H. S. ÖZARSLAN

Abstract. In this paper a general theorem concerning the \(\psi - |C, \alpha; \delta|_k \) summability factors of infinite series has been proved.

1. Introduction. A sequence \((w_n)\) of positive numbers is said to be \(\delta\)-quasi monotone, if \(w_n \to 0, w_n > 0 \) ultimately and \(\Delta w_n \geq -\delta_n \), where \((\delta_n)\) is a sequence of positive numbers (see [1]). Let \(\sum a_n \) be a given infinite series with partial sums \((s_n)\). We define \(A_n^\alpha \) by identity

\[
\sum_{n=0}^{\infty} A_n^\alpha x^n = (1-x)^{-\alpha-1}.
\]

The sequence-to-sequence transformations given by

\[
u_n^\alpha = \frac{1}{A_n^\alpha} \sum_{v=0}^{n} A_{n-v}^{-1} s_v,
\]

\[
t_n^\alpha = \frac{1}{A_n^\alpha} \sum_{v=1}^{n} A_{n-v}^{-1} va_v,
\]

define the \((C, \alpha)\) means of the sequences \((s_n)\) and \((na_n)\), respectively.

The series \(\sum a_n \) is said to be summable \(|C, \alpha|_k \), \(k \geq 1 \) and \(\alpha > -1 \), if (see [3])

\[
\sum_{n=1}^{\infty} n^{k-1} |u_n^\alpha - u_{n-1}^\alpha|^k < \infty.
\]

If we take \(\alpha = 1 \), then \(|C, \alpha|_k \) summability is the same as \(|C, 1|_k \) summability. Let \((\psi_n)\) be a sequence of positive real numbers. We say that the series \(\sum a_n \) is said to be summable \(\psi - |C, \alpha; \delta|_k \), \(k \geq 1 \), \(\alpha > -1 \) and \(\delta \geq 0 \), if

\[
\sum_{n=1}^{\infty} \psi^{\delta k+k-1} |u_n^\alpha - u_{n-1}^\alpha|^k < \infty.
\]

But since \(t_n^\alpha = n(u_n^\alpha - u_{n-1}^\alpha) \) (see [4]) condition (5) can also be written as

\[
\sum_{n=1}^{\infty} \psi^{\delta k+k-1} n^{-k} |t_n^\alpha|^k < \infty.
\]

If we take \(\delta = 0 \) and \(\psi_n = n \) (resp. \(\delta = 1 \) and \(\psi_n = n \)), then \(\psi - |C, \alpha; \delta|_k \) summability is the same as \(|C, \alpha|_k \) (resp. \(|C, 1|_k \)) summability.

Remark. Since \((\psi_n)\) is a sequence of positive real numbers the summability
method $\psi - | C, \alpha; \delta |_k$ is a new method and general than the $| C, \alpha; \delta |_k$ summability method. On the other hand $| C, \alpha; \delta |_k$ and $\psi - | C, \alpha; \delta |_k$ summability methods are different from each other. That is they have got different summability fields.

Therefore, we take the sequence (ψ_n) instead of n.

2. The following theorem is known.

Theorem A ([2]). Let t^n_α be the n-th Cesáro mean of order α, with $\alpha \geq 1$, of the sequence (na_n) such that $a_n \geq 0$ for all $n \geq 1$ whenever $\alpha > 1$ and let $\lambda_n \to 0$ as $n \to \infty$. Suppose that there exists a sequence of numbers (B_n) such that it is δ-quasi monotone with $\sum n^\alpha \delta_n \log n < \infty$, $\sum B_n \log n$ is convergent and $| \Delta \lambda_n | \leq | B_n |$ for all n.

\[(7) \quad \sum_{n=1}^{m} | \Delta (n^\alpha) | | B_{n+1} | \log n = O(1), \]

\[(8) \quad \sum_{n=1}^{m} \frac{1}{n^\alpha} | t^n_\alpha |^k = O(\log m) \text{ as } m \to \infty, \]

then the series $\sum a_n \lambda_n$ is summable $| C, \alpha |_k, k \geq 1$.

3. The aim of this paper is to generalize Theorem A in the following form.

Theorem. Let $k \geq 1$ and $\delta \geq 0$. Let t^n_α be the n-th Cesáro mean of order α, with $\alpha \geq 1$, of the sequence (na_n) such that $a_n \geq 0$ for all $n \geq 1$ whenever $\alpha > 1$ and let $\lambda_n \to 0$ as $n \to \infty$. Suppose that there exists a sequence of numbers (B_n) such that it is δ-quasi monotone with $\sum n^\alpha \delta_n \log n < \infty$, $\sum B_n \log n$ is convergent, $| \Delta \lambda_n | \leq | B_n |$ for all n and that condition (7) of Theorem A is satisfied. If there exists an $\epsilon > 0$ such that the sequence $(n^{-k} \psi_n^{\delta k + k - 1})$ is non-increasing and

\[(9) \quad \sum_{n=1}^{m} \psi_n^{\delta k + k - 1} n^{-k} | t^n_\alpha |^k = O(\log m) \text{ as } m \to \infty, \]

then the series $\sum a_n \lambda_n$ is summable $\psi - | C, \alpha; \delta |_k$.

If we take $\delta = 0$, $\epsilon = 1$ and $\psi_n = n$ in this theorem, then we get Theorem A.

4. We need the following lemmas for the proof of our theorem.

Lemma 1 ([5]). If $\sigma > \delta > 0$, then

\[(10) \quad \sum_{n=v+1}^{m} \frac{A_n^{\delta - \sigma}}{A_n^{\sigma}} = \sum_{n=v+1}^{m} \frac{(n-v)^{\delta - 1}}{n^\sigma} = O(\psi^{\delta - \sigma}) \text{ as } m \to \infty. \]

Lemma 2 ([2]). Let $\lambda_n \to 0$ as $n \to \infty$. Suppose that there exists a sequence of numbers (B_n) which is δ-quasi monotone with $\sum B_n \log n$ is convergent and $| \Delta \lambda_n | \leq | B_n |$ for all n, then

\[(11) \quad | \lambda_n | \log n = O(1) \text{ as } n \to \infty. \]

Lemma 3 ([2]). Let $\alpha \geq 1$. If (B_n) is δ-quasi monotone with $\sum n^\alpha \delta_n \log n < \infty$ and $\sum B_n \log n$ is convergent, then

\[(12) \quad m^\alpha B_m \log m = O(1) \text{ as } m \to \infty, \]

\[(13) \quad \sum_{n=1}^{\infty} n^\alpha | \Delta B_n | \log n < \infty. \]

Lemma 4 ([2]). Let t^n_α be the n-th Cesáro mean of order α, with $\alpha \geq 1$, of the sequence (na_n) such that $a_n \geq 0$ for all $n \geq 1$ whenever $\alpha > 1$. If $n \geq v$, then

\[(14) \quad | \sum_{p=1}^{v} A_{n-p \alpha}^{-1} t_{n-p \alpha} | \leq A_{n-v \alpha}^{-1} A_v^{\alpha} | t_v |. \]
5. Proof of the Theorem. Let \((T_n^\alpha)\) be the \(n\)-th \((C, \alpha)\), with \(\alpha \geq 1\), means of the sequence \((na_n\lambda_n)\). Then, by (3), we have

\[
T_n^\alpha = \frac{1}{A_n^\alpha} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_v \lambda_v. \tag{15}
\]

Using Abel’s transformation, we get

\[
T_n^\alpha = \frac{1}{A_n^\alpha} \sum_{v=1}^{n-1} \Delta \lambda_v \sum_{p=1}^{v} A_{n-v}^{\alpha-1} p a_p + \lambda_n \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_v
\]

\[
= \frac{1}{A_n^\alpha} \sum_{v=1}^{n-1} \Delta \lambda_v \sum_{p=1}^{v} A_{n-v}^{\alpha-1} p a_p + \lambda_n T_n^\alpha
\]

\[
= T_{n,1}^\alpha + T_{n,2}^\alpha. \tag{16}
\]

Since

\[
|T_{n,1}^\alpha + T_{n,2}^\alpha|^k \leq 2^k (|T_{n,1}^\alpha|^k + |T_{n,2}^\alpha|^k),
\]

to complete the proof of the theorem, it is sufficient to show that

\[
\sum_{n=1}^{\infty} \psi^{\alpha k + k - n} \rho - n^{-k} |T_{n,r}^\alpha|^k < \infty \text{ for } r = 1, 2, \text{ by (6).}
\]

Firstly, when \(k > 1\), using Lemma 4 and after applying Hölder’s inequality with indices \(k\) and \(k'\), where \(\frac{1}{k} + \frac{1}{k'} = 1\), we get that

\[
\sum_{n=2}^{m+1} \psi^{\alpha k + k - n} \rho - n^{-k} |T_{n,1}^\alpha|^k = \sum_{n=2}^{m+1} \psi^{\alpha k + k - n} \rho - n^{-k} \left(\sum_{v=1}^{n-1} \Delta \lambda_v \sum_{p=1}^{v} A_{n-v}^{\alpha-1} p a_p \right)^k
\]

\[
\leq \psi^{\alpha k + k - n} \rho - n^{-k} \left(\sum_{v=1}^{n-1} \sum_{p=1}^{v} A_{n-v}^{\alpha-1} p a_p \right)^k
\]

\[
= O(1) \sum_{n=2}^{m+1} \sum_{v=1}^{n-1} \psi^{\alpha k + k - n} \rho - n^{-k} \left(\sum_{p=1}^{v} A_{n-v}^{\alpha-1} p a_p \right)^k
\]

\[
= O(1) \sum_{n=2}^{m+1} \sum_{v=1}^{n-1} \psi^{\alpha k + k - n} \rho - n^{-k} \left(\sum_{p=1}^{v} A_{n-v}^{\alpha-1} p a_p \right)^k
\]

\[
\times \left\{ \sum_{v=1}^{n-1} A_{n-v}^{\alpha-1} \right\}^{k-1}
\]

\[
= O(1) \sum_{v=1}^{m} \psi^{\alpha k} |B_v| |C_v|^k \sum_{n=2}^{m+1} \psi^{\alpha k + k - n} \rho - n^{-k} \left(\sum_{p=1}^{v} A_{n-v}^{\alpha-1} p a_p \right)^k
\]

\[
= O(1) \sum_{v=1}^{m} \psi^{\alpha k} |B_v| |C_v|^k \sum_{n=2}^{m+1} \psi^{\alpha k + k - n} \rho - n^{-k} \left(\sum_{p=1}^{v} A_{n-v}^{\alpha-1} p a_p \right)^k
\]

\[
= O(1) \sum_{v=1}^{m} \psi^{\alpha k} |B_v| |C_v|^k \sum_{n=2}^{m+1} \psi^{\alpha k + k - n} \rho - n^{-k} \left(\sum_{p=1}^{v} A_{n-v}^{\alpha-1} p a_p \right)^k
\]

by Lemma 1. Thus

\[
\sum_{n=2}^{m+1} \psi^{\alpha k + k - n} \rho - n^{-k} |T_{n,1}^\alpha|^k = O(1) \sum_{v=1}^{m-1} \Delta \psi^{\alpha k} |B_v| |C_v|^k \sum_{p=1}^{v} \psi^{\alpha k + k - p} \rho - p^{-k} |C_p|^k
\]
+ O(1)m^\alpha \left| B_m \left(\sum_{v=1}^{m} \psi_{k+1}^\alpha - v^{\alpha} \right) \right| |k^k

= O(1) \sum_{v=1}^{m-1} \Delta(v^\alpha | B_v) \log v + O(1)m^\alpha \left| B_m \right| \log m

= O(1) \sum_{v=1}^{m-1} v^\alpha | \Delta B_v | \log v + O(1) \sum_{v=1}^{m-1} \Delta(v^\alpha) \left| B_v+1 \right| \log v

+ O(1)m^\alpha \left| B_m \right| \log m = O(1) as m \to \infty,

by virtue of the hypotheses of the Theorem and Lemma 3.

Again, since \mid \lambda_n \mid = O(1), we have that

\sum_{n=1}^{m} \psi_{n+1}^\delta n^{-k} \left| T_{n,2}^\alpha \right| k

= \sum_{n=1}^{m} \psi_{n+1}^\delta n^{-k} \mid \lambda_n \mid \mid \lambda_n \mid \mid t_n^\alpha \mid k

= O(1) \sum_{n=1}^{m} \psi_{n+1}^\delta n^{-k} \mid \lambda_n \mid \mid t_n^\alpha \mid k

= O(1) \sum_{n=1}^{m-1} \Delta \mid \lambda_n \mid \sum_{p=1}^{n} \psi_{p+1}^\delta p^{-k} \mid t_p^\alpha \mid k

+ O(1) \mid \lambda_m \mid \sum_{n=1}^{m} \psi_{n+1}^\delta n^{-k} \mid t_n^\alpha \mid k

= O(1) \sum_{n=1}^{m-1} \mid \Delta \lambda_n \mid \log n + O(1) \mid \lambda_m \mid \log m

= O(1) \sum_{n=1}^{m-1} \mid B_n \mid \log n + O(1) \mid \lambda_m \mid \log m

= O(1) as m \to \infty,

by virtue of the hypotheses of the Theorem and Lemma 2.

Therefore, we get (16). This completes the proof of the Theorem.

References

Received April 11, 2000, in revised form July 19, 2000.

E-mail address: seyhan@erciyes.edu.tr